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Summary

• While the biogeochemical and physical changes associated with ocean warming, deoxygenation and 
acidification occur all over the world’s ocean, the imprint of these global stressors have a strong regional 
and local nature such as in the Eastern Boundary Upwelling Systems (EBUS). EBUS are key regions for the 
climate system due to the complex of oceanic and atmospheric processes that connect the open ocean, 
troposphere and land, and to the fact that they host Oxygen Minimum Zones (OMZs), responsible for the 
world’s largest fraction of water column denitrification and for the largest estimated emission (0.2-4 Tg N yr-1) 
of the greenhouse gas nitrous oxide (N2O).

• Taking into account mesoscale air-sea interactions in regional Earth System models is a key requirement to 
realistically simulate upwelling dynamics, the characteristics of turbulence and associated offshore transport of 
water mass properties.

• Land-sea-atmosphere interactions modulate warming-induced ocean deoxygenation. For instance, the effect 
of nutrients delivered to the surface ocean by atmospheric deposition may be to stimulate primary production 
and CO2 uptake but also to release N2O, which could exacerbate warming, offset the increased CO2 uptake, 
and thereby accelerate deoxygenation.

• Global warming will alter ventilation and source water properties, oceanic stratification, near-surface wind, 
mesoscale activity, upwelling rates, low cloud cover, and air-sea exchange of gases and particles. Understanding 
these changes and their compensating/synergistic influences on the future trajectory of ocean deoxygenation 
is challenging due to the scarcity of available biogeochemical data and global model biases in EBUS. Regional 
coupled physical-biogeochemical modelling offers an opportunity for addressing the range of variability in 
timescales relevant to OMZ dynamics (i.e. from hourly to decadal timescales) in a realistic framework. 
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Air-sea-land processes/phenomena 
in EBUS

Mechanisms of their impact on oxygen content in the ocean Spatial scales

Wind-driven coastal upwelling. Physical mechanism where cold, nutrient-rich and low-
oxygen waters outcrop supporting the high abundance of 
ocean plants (primary productivity) that produce almost half of 
the atmospheric oxygen we breathe, absorb a large amount 
of CO2, and supply food for fish; which under future scenarios 
(global warming) could modify the export production and 
deoxygenation as well as other services, e.g. fisheries.

1-100 km

Ocean-atmosphere exchange of 
gases.

When OMZ waters upwell and impinge on the euphotic zone, 
there is a potential release to the atmosphere of greenhouse 
gases such as N2O, CO2 and CH4 which further exacerbates 
global warming with feedbacks onto stratification, biological 
productivity and the oxygen inventory.

1-1000 km

Near-coastal mesoscale 
atmospheric circulation-induced by 
orographic effects and underlying 
sea surface temperature. 

Alongshore wind decrease towards the coast (drop-off) 
influences upwelling dynamics and thereby primary and 
export production together with oxygen and distribution.

1-100 km

Sub-meso and mesoscale air-sea 
interactions.

The current feedback (i.e. the effect of the relative wind in the 
estimate of wind stress) and the thermal coupling between 
wind and SST at the scale of the eddies are critical processes 
to determnie the biogeochemical properties distribution, 
including oxygen, through their effect on oceanic mesoscale 
activity.

1-100 km

Low-level cloud cover and aerosols. Stratocumulus clouds cover and aerosols particles of natural 
and anthropogenic origin control incoming solar radiation at 
the ocean surface, thereby playing a modulating role in either 
reducing or enhancing primary production with consequences 
on organic matter production and fate in the water column, 
and ultimately on subsurface oxygen depletion.

10-1000 km

3.4.1 Introduction

Ocean deoxygenation and acidification, along with 
ocean warming, form a trio of threats to marine life. 
These pressures are of critical importance to marine 
ecosystems because they are accelerating within a 
short timeframe (Breitburg et al., 2018a; Gruber, 2011; 
Levin, 2018; Mora et al., 2013). The future status of 
dissolved oxygen in the coastal and open ocean will in 
large measure depend on the scale and rate of global 
environmental change in warming, human population 
growth especially along coasts, and agricultural 
practices. Open-ocean deoxygenation, warming 
and ocean acidification are all driven by increased 
atmospheric CO2. 

While the biogeochemical and physical changes 
associated with ocean warming, acidification and 
deoxygenation occur all over the world, the imprint of 
these combined global stressors is expected to have 
a strong regional and local nature, which is exemplified 
by the Eastern Boundary Upwelling Systems (EBUS). 
Top predators in the marine food web such as pelagic 

billfishes and tunas which might be important for the 
economic development of certain regions are impaired 
by deoxygenation, ocean acidification and temperature 
increase (Breitburg et al., 2018a, b; Stramma et al., 
2011).

The EBUS are key regions for the control of the 
climate system because they connect the open 
ocean and the troposphere through a complex of 
oceanic and atmospheric processes, and they host 
Oxygen Minimum Zones (OMZs), vast oceanic regions 
responsible for the world’s largest fraction of water 
column denitrification. These regions (Figure 3.4.1), 
which include: 1) the U.S. West Coast-Oregon and 
California, 2) the Humboldt Current off Chile and Peru, 
3) the Canary Current/Iberian Peninsula, and 4) the 
Namibia/Benguela upwelling systems, are among the 
most productive marine ecosystems in the world and 
support some of the world’s major fisheries (Bakun, 
1990; Pauly & Christensen, 1995). Production in the 
EBUS is controlled by two main physical factors. Firstly, 
equatorward winds along the eastern boundaries of the 
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Atlantic and Pacific Oceans are linked to atmospheric 
mid-latitude high-pressure systems and force Ekman 
transport and pumping that drives upwelling of deep 
nutrient-rich waters into solar illuminated surface waters, 
enhancing export production and its ultimate decay 
(or consumption), with increased respiration and draw 
down of oxygen (Figure 3.4.2). Locally, mesoscale low-
level atmospheric circulation may also be affected by 
land-sea-atmosphere interactions (Chelton et al., 2007; 
Oerder et al., 2016; Renault et al., 2016a, b) which 
impact upwelling and productivity (Astudillo et al., 2019; 
Renault et al., 2016c). Secondly, remote forcing may 
modulate upwelling at timescales from intra-seasonal 
(e.g. Kelvin waves) to inter-decadal (e.g. gyre circulation, 
El Niño-Soiuthern Oscillation (ENSO)) and longer. 

The physical state of EBUS oceanic regions varies on 
a range of time scales that includes intra-seasonal and 
longer. At interannual timescales, this variability is often 
associated with tropical modes (ENSO in the Pacific 
(Dewitte et al., 2012; Frischknecht et al., 2015), the 
Benguela Niño (Shannon et al., 1986) and the Atlantic 
Equatorial mode in the Atlantic (Zebiak, 1993)) but also 
with extratropical modes (the North Atlantic Oscillation 
(NAO) (Cropper et al., 2014) or the Northern and 
Southern Annular Modes (NAM and SAM, respectively) 
(Thompson & Wallace, 2000)) as well as lower-frequency 
climate modes operating at the basin scale (the Pacific 
Decadal Oscillation (PDO) (Mantua et al., 1997), the 
North Pacific Gyre Oscillation (NPGO) (Di Lorenzo et al., 
2008) and the Atlantic Multidecadal Oscillation (AMO) 
(Enfield et al., 2001)). Ecosystems respond strongly to 
these variations through the physical influence of winds, 
light, and temperature, and their effects on micro-and 
macro-nutrient supply to plankton and oxygen supply 
to marine life. 

In tropical and subtropical regions, EBUS are 
characterized by high primary and export production 
that, in combination with weak ventilation, causes 
natural oxygen depletion and the development of 
midwater oxygen minimum zones (OMZs) (Karstensen 
et al., 2008). Low oxygen, low pH values and shallow 
aragonite saturation horizons co-occur within them, 
affecting nearly all aspects of ecosystem structure 
(Chavez et al., 2008) and function in the water column, 
including the present unbalanced nitrogen cycle 
(Paulmier & Ruiz-Pino, 2009). The coupling between 
upwelling, productivity, and oxygen depletion feeds 
back to biological productivity and their role as sinks or 
sources of climate active gases. There is for example a 
net nitrogen loss to the atmosphere of N2O (particularly 
in the South-East Pacific OMZ, Arevalo-Martinez et al., 
2015). In addition, where oxygen concentrations are 
extremely low, poisonous hydrogen sulphide (H2S) gas 
may erupt to the surface (Bakun, 2017; Schunck et al., 
2013; Weeks et al., 2003). EBUS also play a critical 
role in atmospheric chemistry and climate through 
emission of active trace gases (Law et al., 2013). In the 
context of climate change, ocean warming contributes 
to deoxygenation through two main processes: 
warmer water holds less oxygen and causes increased 
stratification which reduces ventilation of both the ocean 
interior and estuaries. 

While there is no doubt that ocean deoxygenation is an 
ongoing process, there is still a critical gap in knowledge 
of understanding the exact driving mechanisms, 
the intensity, and the spatial and temporal variability 
of ocean deoxygenation as well as its impact on 
marine food webs and biogeochemistry. Therefore, 
understanding how land-air-sea interactions control the 
dynamics behind the OMZs and what may potentially 
exacerbate deoxygenation becomes not just a matter 

Figure 3.4.1  Eastern Boundary Upwelling Systems (EBUS) (white contour boxes) over an annual 2017 mean of A) chlorophyll-a concentration (derived from 
MODIS-Aqua), and B) dissolved oxygen concentration (derived from World Ocean Atlas, 2013) at 400m depth.

A B
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of scientific interest, but also a major societal concern. 
The economies of the countries neighbouring upwelling 
zones, are largely reliant on adjacent marine resources 
for food and employment (Figure 3.4.3). These countries 
urgently need improved capacity to predict variations in 
ecosystem structures and coastal water quality relating 
to deoxygenation and acidification to define sustainable 
management strategies for their marine resources.

This synthetic overview focuses first on intricate 
interactions between the ocean, atmosphere and land 
in the EBUS by emphasizing the processes driving 
these interactions, their time-scale modulations, their 
impacts on oxygen depletion and on future rates of 
deoxygenation within a changing climate. Second, 
on local forcing factors that are believed to be key to 
understanding the sensitivity of ecosystems and OMZs 
to changes in mean state, e.g. ocean-atmosphere 

interaction of gases; mesoscale atmospheric circulation 
(i.e. near-coastal cross-shore wind gradients); submeso- 
and mesoscale air-sea interactions; and cloud cover 
and direct and indirect effects of aerosols. Finally, the 
remote influence of climate modes and their changes in 
a warming climate is discussed.

3.4.2  Land-air-sea interactions over the EBUS

To study the intricate interactions between physical 
and biogeochemical processes in upwelling systems 
requires an integrative approach that links ocean, 
atmosphere, land, and coastal areas impacted by 
human activities as well as socio-economic dimensions. 
This approach has been adopted by the SOLAS 2025 
Science Plan and Organization (Brévière et al., 2016) 
that addresses greenhouse gases, oceanic impacts on 
atmospheric chemistry and linkages between upwelling 
and air-sea exchanges of biogenic gases, ecosystem 
structure, deoxygenation, and acidification (Figure 
3.4.4). The impacts of both submeso- and mesoscale 
variability in ocean (eddies, fronts, filaments) and near-
surface atmospheric (winds and its spatial fluctuations) 
circulations on OMZ dynamics and air-sea exchange, 
which is also likely impacted by as yet unidentified 
variations in sea-surface surfactant activity in response 
to ecosystem variations, are not yet understood. How 
aerosols link ocean temperature and stratocumulus 
clouds that impact regional radiative budgets in 
upwelling zones is a further gap in knowledge that needs 
to be addressed. Finally, at low latitudes, upwelling 
systems are often bounded by desert landscapes, and 
the balance between micronutrient inputs from above 
versus below is still uncertain, particularly at different 
time scales. 

Low resolution Coupled Model Intercomparison 
Project (CMIP)-class climate models do not resolve 
well the essential characteristics of the EBUS where 
alongshore winds exhibit mesoscale features such as 
a nearshore decrease in intensity (Astudillo et al., 2017) 
and the upwelling is confined to a coastal band of 
only tens of km in width (Estrade et al., 2008). Model 
errors are amplified by air-sea interactions, yielding a 
severe warm sea-surface temperature (SST) bias in 
EBUS (Richter, 2015) (Figure 3.4.5), which has eluded 
the interpretation of long-term trends in OMZs (Cabré 
et al., 2015; Stramma et al., 2008, 2012). In addition, 
processes occurring on a scale smaller than the model 
grid used may drive the relationship between key 
ecosystem properties and the physical system, making 

Figure 3.4.2  Schematic of air-sea-land coupled system in upwelling 
regions. 

Figure 3.4.3  Banjul, Gambia, local fishing boats getting ready to leave
© Salvador Aznar / Shutterstock.com.
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it difficult to understand the consequences of changes 
in the physical system for marine ecosystems based on 
the outputs of Ocean Model Intercomparison Project 
(OMIP) and CMIP class models alone. Several sources 
cause these biases and owing to ocean-atmosphere 
coupling it has been difficult to rank them by 
importance and criticality (Richter, 2015). Among them: 
i) underestimation of alongshore winds causes poor 
simulation of upwelling and alongshore currents and 

the cooling associated with them, ii) underprediction 
of stratocumulus decks and their effects on shortwave 
radiation and low-level atmospheric circulation, iii) 
inadequate representation of offshore transport of 
cool waters by mesoscale turbulence is impacted by 
inadequate spatial resolution, and iv) aerosols provide 
a further problem for low resolution global models as 
the models overestimate their effects with respect to 
observations (Boucher et al., 2013). The large range 

Figure 3.4.4 Jigsaw puzzle schematic of processes involved in ocean-atmosphere-land interactions (with permission from Brévière et al., 2016).

Figure 3.4.5  Annual-mean SST error, relative to the Reynolds SST dataset (Reynolds et al., 2007), of an ensemble of 39 coupled GCMs from the CMIP5 
dataset in the historical integration (1982-2005). 
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of spatial and temporal scales of variability at which 
physical and biogeochemical processes interact make 
modelling and prediction of the location, strength and 
temporal variability of OMZs in EBUS a challenging task 
(Cabré et al., 2015; Karstensen et al., 2008; Oschlies 
et al., 2017). In addition to physical causes for OMZ 
biases, biogeochemical causes include a particulate 
organic carbon flux at 100 m that is too high compared 
to observations, and a too deep expansion of the OMZ 
due to low remineralization in the upper ocean that is 
associated with a transfer of particulate organic carbon 
to depth that is too great (Cabré et al., 2015). 

By better constraining boundary conditions and allowing 
the relevant resolution to address coastal upwelling 
dynamics, regional coupled biogeochemical modelling 
nonetheless has provided a complementary approach 
to study the dynamics of OMZs and their relationship to 
climate (e.g. Gutknecht et al., 2013; Machu et al., 2015; 
Montes et al., 2014; Resplandy et al., 2012). However, 
the use of atmospheric reanalysis products for oceanic 
downscaling in EBUS has severe limitations (Astudillo 
et al., 2017; Cambon et al., 2013; Goubanova et al., 
2011; Machu et al., 2015) calling for a regional focus in 
the treatment of atmospheric forcings. 

3.4.3  Ocean-atmosphere interactions of 
gases 

When OMZ waters upwell and impinge on the euphotic 
zone, they release significant quantities of greenhouse 
gases, including CO2, N2O and CH4, to the atmosphere 
(i.e. Arevalo-Martinez et al., 2015; Babbin et al., 
2015; Cornejo & Farias, 2012; Cornejo et al., 2015; 

Farias et al., 2015; Kock et al., 2012; Naqvi et al., 
2010) exacerbating global warming with feedbacks 
to stratification, biological productivity and the oxygen 
inventory.

Keeling and Shertz (1992) documented changes in 
atmospheric oxygen concentrations and found they 
were dominated by the seasonal cycle of net biological 
production and by a long-term decline due to the burning 
of fossil fuels. These changes are small, however, in the 
order of parts per million and thus negligible compared to 
observed changes in oxygen in low latitude thermocline 
waters. Recently, Eddebbar et al. (2017), using 
atmospheric potential oxygen (APO≈O2+1.1*CO2), 
showed that air-sea O2 exchange is modulated at 
interannual timescales by ENSO through its effect 
on equatorial upwelling rather than through its effect 
on biological productivity or thermally driven O2 
exchange, suggesting that the dominant processes 
behind air-sea interface gas exchange are likely to 
depend on timescales and regions. Closing budgets of 
dissolved elements is a key issue that deserves further 
investigation.

3.4.4  Mesoscale atmospheric circulation 

Historically, upwelling indices have been mostly 
based on estimating Ekman transport from the 
magnitude of alongshore wind speed. However, within 
approximately 50-km from the coast alongshore winds 
are typically strongest offshore, becoming weaker 
towards the coast owing to orographic effects and, 
to a lesser extent, the cooler sea-surface temperature 
of upwelling that stabilizes the marine boundary layer 
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Figure 3.4.6 Schematic of the role of the wind drop-off in upwelling regions : A) Broad wind drop-off, B) Sharp wind drop-off.
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(Renault et al., 2016a). The wind stress curl induced 
by this wind drop-off modulates the position and 
intensity of the undercurrent. In the California system, 
a broader drop-off induces a shallower and more 
intense undercurrent (Capet et al., 2004; Renault et 
al., 2016c) while in the Central Chile upwelling system, 
the intensity of the wind drop-off is more influential 
on the surface current (Astudillo et al., 2019). In both 
cases, this influences the production of eddies near 
the coast through baroclinic and barotropic instability 
(Capet et al., 2008), with consequences on the off-
shore export of water mass properties. For instance, 
in the California system, by modulating the coastal 
circulation, the wind drop-off changes the composition 
and origin of the biogenic material of coastal zones 
and thus the upwelling efficiency and OMZ properties 
(Renault et al., 2016c). The latter showed that the 
coastal wind shape, by modulating the baroclinic 
instabilities, modulates the Eddy Kinetic Energy 
(EKE) levels (Figure 3.4.6). In the open ocean, and in 
particular in low-nutrient environments, mesoscale 
processes increase the net upward flux of limiting 
nutrients and enhance biological production (Garçon 
et al., 2001; McGillicuddy et al., 2007; Oschlies & 
Garçon, 1998). In the EBUS, eddy activity can be 
a limiting factor, which progressively prevents high 
levels of net primary production as the number of 
eddies increases by subducting nutrients below the 
euphotic layer (eddy quenching) (Gruber et al., 2011; 
Nagai et al., 2015). Thus, in some EBUS, less EKE 
means a more productive system. Considering wind 
forcing at fine scales is thus essential to realistically 
simulate mean current flow in coastal systems, whose 
characteristics determine the level of mesoscale 
activity through instability processes (Capet et al., 
2008) and thus off-shore transport of water mass 
properties with likely consequences for oxygen 
content. Another potentially important factor that is 
associated with mesoscale atmospheric circulation is 
related to low-level coastal jets in the atmosphere (as 
found off Central Peru (Dewitte et al., 2011), Central 
Chile (Muñoz & Garreaud, 2005), and off Namibia 
(Patricola & Chang, 2017)) that provide a source of 
oceanic mixing and variability of the undercurrent.

3.4.5  Submeso- and mesoscale air-sea 
interactions 

Air-sea interaction at sub meso- to mesoscales 
(horizontal scales of the order of 100 m - 100 km) 
modulates the properties of the oceanic boundary layer 

with rectified effects on the mean circulation in EBUS. 
For instance, sea-surface temperature gradients at 
ocean fronts and eddies can modify the surface wind 
field through processes previously considered for warm 
waters and larger scale circulation. These processes 
include the downward transfer of momentum flux to 
the ocean surface (Koseki & Watanabe, 2010; O’Neill et 
al., 2010), as well as changes in the pressure gradient 
across the SST front that generate low-level wind 
anomalies. Scatterometer observations together with 
micro-wave observations of SST have facilitated the 
collection of data that allows the investigation of these 
processes at the mesoscale. Chelton et al. (2004) and 
Small et al. (2008) identified a link between modification 
of the dynamics of the atmospheric boundary layer 
by SST and the feedback of this modification on the 
ocean through wind surface stress and heat flux. 
This link has been observed between sharp SST 
gradients and surface winds - the so called ‘Chelton 
effect’, where winds tend to accelerate over warm 
and decelerate over cold waters in frontal zones. This 
effect results in a quasi-linear relationship between the 
curl (divergence) of the wind and the SST gradient 
according to a perpendicular (parallel) direction to the 
wind. These fine scale interactions influence the ocean 
dynamics through acting on both momentum and heat 
fluxes and consequently distribution and evolution of 
biogeochemical properties.

Recent regional coupled modelling studies by Seo et al. 
(2016) and Renault et al. (2016b) have highlighted the 
importance of current-wind interaction for the energetics 
of the California Upwelling System, distinguishing 
the thermodynamics and dynamics associated with 
air-sea interaction. In particular, consideration of 
oceanic currents in estimating wind stress (so-called 
current feedback) yields a reduction in oceanic EKE 
in high-resolution models. Wang and Castelao (2016) 
showed also from satellite observations that a strong 
coupling between SST gradients and wind stress 
curl at fine scales is observed in many mid-latitude 
regions throughout the world, especially in regions with 
strong fronts like the Western and Eastern Boundary 
Currents, which challenges how high-resolution oceanic 
models should be forced by atmospheric re-analyses, 
the latter encapsulating the effect of the observed 
turbulent oceanic flow. These processes have yet to be 
implemented in high-resolution physical-biogeochemical 
atmosphere and oceanic models, which will help 
address still unresolved effects on mesoscale eddies, 
oxygen content and their distribution. 
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3.4.6  Cloud cover, aerosols direct and indirect 
effects

The EBUS regions are hotspots where global climate 
models diverge when trying to estimate the top-of-
atmosphere radiative effect (Nam et al., 2012). They 
are characterized by persistent stratocumulus clouds 
topping a shallow, stable marine boundary layer 
maintained by the cool SST of upwelling. Stratocumulus 
clouds (Figure 3.4.7) are highly reflective and modify 
the net radiative balance at the top of the atmosphere 
more than any other cloud regimes. Yet, these cloud 
formations are also amongst the largest source of 
uncertainty in estimating the radiative budget of the 
Earth’s atmosphere (Boucher et al., 2013). 

Aerosol particles of natural and anthropogenic origin 
play a key role in the radiative budget and more globally 
in the climatic functioning of EBUS since they modulate 
the greenhouse effect of long-lived gases through their 
indirect effects on cloud formation (Boucher et al., 2013). 
The extent of interaction of the aerosols with radiation 
and clouds depends on their nature, in particular their 
chemical composition and size distribution. Aerosols 
may also influence primary production by modifying low 
level circulation and the re-emission of sensible heat by 

altering the penetration of short-wave radiation into 
the marine boundary layer, with feedbacks to ocean 
dynamics, and fertilizing the surface ocean through dust 
deposition (Figure 3.4.4). Together they influence the 
biological feedbacks associated with variations in short-
wave radiation penetration into the mixed layer that are 
associated with changes in production. For instance, 
by absorbing or reflecting light, the direct radiative effect 
of aerosols could induce a decrease of 15 to 20% in 
primary production along the Senegalese coast (Mallet 
et al., 2009). Atmospheric deposition to the ocean 
through the fertilizing role of micro- and macronutrient 
inputs has a direct positive effect on primary production 
(Capone & Hutchins, 2013; Ito et al., 2016; Neuer et 
al., 2004). Ito et al. (2016) showed in a modelling study 
that the effect of aerosol deposition on oceanic oxygen 
is most pronounced at low latitudes despite deposition 
being greatest in mid-latitudes, due to oceanic transport 
favouring a regional increase in productivity, respiration 
and consequently subsurface oxygen depletion. These 
competing effects of reduction and enhancement are 
probably modulated by the oceanic circulation. For 
instance, in the Benguela/Namibia upwelling system, 
aerosols produced by biomass burning attenuate light 
and thereby primary production. They stabilize the 
troposphere and thus reinforce low cloud cover (Adebiyi 

Figure 3.4.7  Stratocumulus clouds © Kingcraft / Shutterstock.com.
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et al., 2015; Formenti et al., 2017). On the other hand, 
oceanic stratification is reduced (colder SST), inducing 
a more efficient upwelling and thus an increase in 
production. Jousse (2015) showed the importance of 
representing accurately aerosol spatial variability and 
the associated indirect effects on the Liquid Water Path 
for realistically simulating solar radiation in the north-
east Pacific. 

Atmospheric deposition of nitrogen to the ocean (NOx 
and NH3) has tripled since 1860 to 67 Tg N yr-1 and is 
expected to grow further (Duce et al., 2008). Including 
this increasing atmospheric forcing of anthropogenic 
nitrogen in model simulations, Ito et al. (2016) and 
Oschlies et al. (2017) both found a reduction of the 
simulated tropical thermocline oxygen, but with 
different amplitudes due to their treatment of nitrogen 
cycle feedbacks, in particular via nitrogen fixation. 
Since factors controlling nitrogen fixation and absolute 
rates are still poorly understood (Landolfi et al., 2015), 
the impact of atmospheric nitrogen deposition on 
ocean productivity and thereby on oxygen content still 
constitutes an important knowledge gap.

Deposition of volcanic ash during explosive eruptions 
can impact phytoplankton and marine foodwebs by 

releasing iron especially and other nutrients into sea 
water (Garçon et al., 2015; Olgun et al., 2011, 2013). 
Explosive tropical volcanic eruptions are sufficiently 
strong to inject aerosols into the stratosphere. These 
aerosols backscatter incoming solar radiation and can 
reduce global surface temperature by a few tenths of a 
degree Celsius for up to two years. Ocean fertilization 
by volcanic eruptions may also affect marine biomass 
within the ash-fall and neighbouring areas. How 
these antagonistic mechanisms operating on different 
scales will impact primary productivity and oxygen 
concentrations is a topic which will require further 
study.

3.4.7  Influence of climate modes and 
changing climate

The contribution of climate modes to variability in the 
oxygen inventory is poorly understood mostly because 
of the scarcity of oxygen data. In the open ocean, 
changes in ventilation and oxygen supply are considered 
to be major drivers of trends in the oxygen inventory. 
How existing processes and pathways of ventilation 
are being perturbed by climate variability in the ocean 
within a regional context (in particular OMZs) or through 
implied mechanisms (e.g. zonal jets in the tropics, mid/
high latitude subduction) is an active area of research. 
The scarcity of data has only allowed the temporal 
variability of dissolved oxygen to be documented at a few 
locations (e.g. Bograd et al., 2008; Farias et al., 2007; 
Fernandez et al., 2015; Graco et al., 2017; Gutierrez et 
al., 2008; McClatchie et al., 2010; Monteiro et al., 2011 ; 
Paulmier et al., 2006) and only over decadal time scales 
in the California upwelling system. 

The investigation of the OMZ forcing by the climate 
modes requires dedicated modelling studies that 
incorporate as much as possible the aforementioned 
processes considering the chain of intricate interactions 
at different spatial and temporal scales. The influence 
of climate modes can be through either change in 
frequency of occurrence of climatic events or change 
in amplitude of the climate modes, which, through 
non-linearity, can change the regional mean circulation, 
producing a so-called “rectified” effect. This is illustrated 
by the results of a long-term integration with a regional 
coupled biogeochemical model of the Peru upwelling 
system which is connected to ENSO dynamics through 
the propagation of Kelvin waves along the coast. 
During extreme El Niño events, the coastal upwelling 
is switched off for several seasons. Conversely during 

Figure 3.4.8 Long-term trend in dissolved oxygen (in µM decade-1) at 12°S 
over the period 1958-2008 as simulated by a regional coupled model in a 
configuration similar to Dewitte et al. (2012). The black thick line indicates 
the iso-oxygen surface at 1ml L-1 (i.e. oxycline depth) over the full period 
whereas the thick white line is for the period 2000-2008. Only the values 
significant at the 95% level are shown. 
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Central Pacific (CP) El Niño, near-normal to cool 
conditions prevail (Dewitte et al., 2012). The change 
in frequency of occurrence of the two types (CP and 
Eastern Pacific - EP) of El Niño as observed since the 
1990s (i.e. more occurrence of CP El Niño events, cf. 
Lee & McPhaden, 2010) leads to an increase in mean 

upwelling conditions at decadal timescales (Dewitte 
et al., 2012) which is consistent with observations 
(Gutierrez et al., 2011). In the modelling study of Dewitte 
et al. (2012), the upwelling favourable winds have no 
trend. Embedding the BioEBUS biogeochemical 
model into the oceanic model configuration of Dewitte 

Figure 3.4.9 Composite evolution of dissolved oxygen concentration anomaly at 200m in the OMZ region to the west of South America during Eastern Pacific 
(EP, top panels) and Central Pacific (CP, bottom panels) El Niño events as simulated by a high-resolution biogeochemical coupled model. See Montes et al. 
(2014) for the biogeochemical model description and validation and Dewitte et al. (2012) for the ocean model setting and validation. Three seasons are 
considered with two, MAM and JJA following the peak season of El Niño (DJF). Anomalies are normalized by their variance over the length of the simulation 
(1958-2008) and so are in adimensionalized units. Anomalies are only shown inside the OMZ which is defined as the region where the O2 concentration is 
lower than 1 ml L-1. The significance of the composites is estimated using a bootstrap method with 6 CP and 5 EP events over the simulated period with the 
contours in red and blue indicating the 90% significance level for EP and CP events, respectively. Tick marks on the contours indicate the direction where the 
significance level is larger than 90%.
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et al. (2012) yields changes that involve a long-term 
deoxygenation of the upper part of the OMZ off northern 
Peru (Figure 3.4.8). This deoxygenation trend above 
the oxycline of between -2 and -4 µM decade-1 over 
1958-2008 agrees reasonably well with multi-decadal 
trend estimates of between -1 and -3 µM decade-1 over 
1958-2015 estimated from the World Ocean Atlas (Ito et 
al., 2017), and can be interpreted as an ENSO-induced 
response of O2 variations affecting the mean OMZ. Such 
a rectified effect results from the strong asymmetry of 
EP El Niño events in the far eastern Pacific (i.e. the fact 
that the EP El Niño events yield a strong warming off 
the coast of Peru converse to the CP El Niño or La Niña 
events). In particular the Peru-Chile Undercurrent brings 
O2 deficient waters from the equatorial region (Montes et 
al., 2014) and is considerably reduced during EP El Niño 
events, which are associated with a depressed oxycline 
and have an anomalous positive O2 concentration within 
the OMZ (Figure 3.4.9). Conversely during CP El Niño 
events, the OMZ is intensified, potentially favouring 
hypoxic conditions. This illustrates that the mechanisms 
by which climate modes influence OMZ dynamics 
are not straightforward and could not be limited to 
processes that influence the upwelling favourable winds 
(Bakun, 1990). 

Similar to the Peru coast, the occurrences of interannual 
warm (Benguela Niño) and cold events along the coast 
of Africa have been intensively studied because of 
their effects on the local marine ecosystems, hypoxia 
events, and atmospheric circulation and rainfall. Using 
the same coupled physical/biogeochemical model, 
Bachèlery et al. (2016) showed that oceanic remote 
equatorial forcing explains more than 85% of the coastal 
interannual oxygen fluctuations along the Angolan and 
Namibian coasts up to the Benguela Upwelling System. 
These events, associated with poleward propagations 
of upwelling and downwelling coastal trapped waves, 
are at a maximum in the subsurface and are controlled 
by advection processes. The associated variation in 
the oxygen content in waters below the surface along 
the shelf may also affect the extension of the OMZ and 
enhance natural hypoxia. 

Global model projections simulate an intensification of 
winds that favours upwelling in the 21st century at least 
in mid-latitudes upwelling systems (Rykaczewski et al., 
2015; Wang et al., 2015). A weak confidence in future 
projections of the evolution of oxygen is mainly due to 
uncertainty associated with the competing effects of 
intensifying winds and increasing thermal stratification. 

Together they will determine the amount of nutrients 
entrained in the euphotic zone and thereby biological 
productivity and oxygen levels. This uncertainty in the 
modifications of ventilation processes and source-water 
pathways that supply the EBUS constitutes another 
difficulty. Indeed, Earth System model simulations 
suggest large changes in the oxygen inventory for the 
21st century, although the agreement among models 
is weak and especially so for oxygen deficient regions 
(Bopp et al., 2017; Cabré et al., 2015). Observations 
in some EBUS have shown trends towards increased 
upwelling and declining oxygen levels (Garcia-Reyes et 
al., 2015). However, the degree to which these changes 
are attributable to climate change is unclear especially in 
tropical regions owing to the superimposition of natural 
variability in the climate and regional circulation, inducing 
a myriad of potential interactions. Understanding 
and predicting the resulting effects of all antagonistic/
synergistic factors on the future trajectory of ocean 
deoxygenation is an immense and challenging task.

3.4.8  Conclusions / Recommendations

The relationships between upwelling dynamics, 
marine ecosystems, and atmospheric chemistry have 
implications for all coastal marine ecosystem services, 
including fisheries management and aquaculture, 
carbon sequestration, air cleansing, and cultural and 
recreational activities in these highly vulnerable coastal 
regions. Land-air-sea interactions that regulate EBUS-
OMZ dynamics continue to be an area of high uncertainty 
in understanding the Earth system. Rapid changes in 
ocean-atmosphere interactions are under way and 
many knowledge gaps remain, raising questions such 
as:

• What is the magnitude of the EBUS OMZs net 
radiative forcing and associated climate effect?

• What is the role of these oxygen deficient 
environments in an oxygenated world for marine 
biogeochemical equilibrium cycles of: oxygen, 
nitrogen, carbon, phosphorus, silica, sulphur, etc., 
as well as for the resilience of marine ecosystems?

• How will these regions evolve under the combined 
action of multiple stressors (warming, stratification 
change, acidification and deoxygenation)?

These questions are at the heart of several international 
initiatives, the Global Ocean Oxygen Network GO2NE 
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(http://www.unesco.org/new/en/natural-sciences/
ioc-oceans/sections-and-programmes/ocean-
sciences/global-ocean-oxygen-network/) (Breitburg 
et al., 2018a,b), the IMSOO (Implementation of Multi-
disciplinary Sustained Ocean Observations)/GOOS 
OMZ demonstration theme with the VOICE (Variability in 
the Oxycline and Its Impacts on the Ecosystem) project 
(Garçon et al., 2018; Palacz et al., 2017a, b), and 
the SCOR Working group N°155 ‘Eastern boundary 
upwelling systems (EBUS): diversity, coupled dynamics 
and sensitivity to climate change’ (http://www.scor-
int.org/SCOR_WGs.htm) as well as part of the new 
science plans of several global research projects such 
as SOLAS, IMBeR and CLIVAR.

An assessment of the different levels of response 
is needed that includes further analysis of historical 
data and long-term observations, experiments and 
forecast models that take into account the impacts of 
multiple stressors at the physiological/biogeochemical, 
organism, and ecosystem levels. There is no doubt 
that the most effective solution to mitigate global 
environmental change and the deoxygenation trend is to 
curb carbon emissions. Recognizing and understanding 
these climate stressors which interact with other human 
activities is essential to sustainably manage ocean 
ecosystems. What the costs of no action will be is 
at present unclear due to a lack of information and 
understanding.
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