IUCN WATER AND NATURE INITIATIVE

PANGANI BASIN WATER BOARD¹

PANGANI RIVER BASIN FLOW ASSESSMENT

The Vegetation of the Pangani River Basin and its Association with Flow Regimes

P.K.T. Munishi and A. Chitiki

December 2007

¹ As of 2010, Pangani Basin Water Office is known as Pangani Basin Water Board

Published by: Pangani Basin Water Board (PBWB) International Union for Conservation of Nature (IUCN)

Copyright: © 2007 International Union for Conservation of Nature and Pangani Basin Water Board

This publication may be produced in whole or part and in any form for education or non-profit uses, without special permission from the copyright holder, provided acknowledgement of the source is made. IUCN would appreciate receiving a copy of any publication which uses this publication as a source.

No use of this publication may be made for resale or other commercial purpose without the prior written permission of IUCN.

- **Citation:** PBWB/IUCN. (2007). Pangani River Basin Flow Assessment: The Vegetation of the Pangani River Basin and its Association with Flow Regimes. Nairobi, KE: IUCN ESARO and Moshi, TZ: PBWB. 80 pp.
- Available from: International Union for Conservation of Nature (IUCN) Eastern and Southern Africa Regional Office (ESARO) Publications Service Unit, P. O. Box 68200 - 00200, Nairobi, Kenya; Telephone +254 20 2493561/65; Fax +254 20 2493570; E-mail: earo@iucn.org

The designations of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of the participating organizations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.

The opinions expressed by the authors in this publication do not necessarily represent the view of PBWB, EU, UNDP GEF, WANI or IUCN.

THE VEGETATION OF THE PANGANI RIVER BASIN AND ITS ASSOCIATION WITH FLOW REGIMES

BY

PROF. P. K. T. MUNISHI & MR. A.CHITIKI

DEPARTMENT OF FOREST BIOLOGY SOKOINE UNIVERSITY OF AGRICULTURE PO BOX 3010 MOROGORO, TANZANIA

FOR

IUCN EASTERN AFRICAN REGIONAL OFFICE, DAR ES SALAAM, TANZANIA

DECEMBER 2007

FINAL REPORT

EXECUTIVE SUMMARY

The Pangani River Basin Flow Assessment (PRBFA) is one of the primary activities that will provide technical information to support water allocation. Its objective is to synthesize present knowledge of the river systems and its users and, in line with the new Tanzanian water policy, to create management tools that will help promote an integrated approach to future water-development and water-allocation decisions. Creation of the tools depends on a substantial investment in new understanding of the links between river flow, the quality of goods and services provided by the river, and the lives and livelihoods of the river users. The process of synthesizing present knowledge on the Pangani ecosystem has begun.

This synthesis has led to identification of a series of specialist studies that are needed to further enhance understanding of the river system and the people of the basin, one of which a focus on exploring how plant species' abundance and distribution may change as a result of alteration of freshwater flow patterns.

The objectives of this vegetation study were therefore to:

- Describe the relationships between the timing and magnitude of freshwater flows in the Pangani system and the biology and life-history characteristics of its key plant species;
- Use these relationships to infer what the historic abundance levels and distribution patterns were for these species in the Pangani catchment (where such information is lacking);
- Predict how abundance and distribution patterns may change in the future under altered flow patterns.

The study used existing vegetation data of the Pangani River Basin (IUCN 2006, Kamugisha *et al.*, 2007) to first describing the longitudinal distribution of the riverine species within the vegetation communities, categorizing them into terrestrial and aquatic, then describing the longitudinal and lateral distribution of the species within vegetation communities in five longitudinal zones of the basin i.e. mountain stream, upper foothill, lower foothill, lower mature river/rejuvenated bedrock cascade and the estuary. Later the drivers of change in this system were identified as well as the ecologically and socio-economically important plant species. Conceptual Models were then developed that show how different species in the different zones of the Pangani River basin will respond to different flow regimes in different seasons *i.e.* median flow during the dry and short rain seasons, 7-day minimum flow during the dry season and the short rain seasons and duration of flow, median flow and small flood peaks during the long rains.

Longitudinally, the terrestrial riverine vegetation communities of the Pangani river system consist of a wide range of tree, shrub, herb, climbers/liana species as well as ferns, and reeds. Herb species make the biggest proportion (25%) followed by trees and shrubs (21%), lianas (19%), grasses (12%), ferns and reeds (1%). There are about 32 tree species and 36 herb species that occur in the Pangani River system. Furthermore the number of shrub, lianas/climbers and grass/fern/reed species was 32, 29 and18 respectively.

Species of the aquatic vegetation were considered as those described as water loving and real aquatic plants. These include a variety of tree, shrub, liana, sedge and grass species (Table 2, Figure 2). In this category there is one fern species, four grass species, two liana species, three shrub species, four tree species, four grass species, six herb species and seven sedge species. Sedges form the highest proportion (30%), followed by herbs (26%) trees, grasses (15%), shrubs (13%), lianas (9%) and ferns (4%)

Generally there are 11 species that can be described as water loving, 16 species as real aquatics and one species as a salt lover. The water loving species occur in areas that are saturated or have high moisture content throughout the year and can be categorized as emergents in aquatic systems. On the other hand the aquatic plants occur in areas that have high soil moisture or under saturated conditions throughout the year and can be more or less submerged all the time

The component species of the Pangani River system are distributed differently along

the upstream - downstream zones. The Pangani river system has been classified into five zones, namely mountain stream, upper foothill, lower foothill, rejuvenating bedrock cascade, mature lowland river and the estuary (IUCN 2006). Each of these zones represents specific characteristics of the system and has different vegetation species and community composition and distribution

The estuary's principle vegetation types are sedges, palms and Mangroves. Sedges and lilies are dominant in the upper reaches, while the middle and lower reaches are dominated by palms and mangroves respectively. There is a strong zonation in these communities up the length of the estuary, presumably a function of the salinity distribution in the system

Of these zones, the lower foothill zone was the most species rich in terms of total numbers and aquatic plant species, while the upper foothill was the most species rich in terms of terrestrial plant species.

The different zones of the basin show changes from natural vegetation cover to modified vegetation especially along the riparian zones. Most of these changes seem to be human induced resulting from degradation of natural vegetation giving the exotics a more competitive ability. Exotic species therefore exclude natural vegetation due to vigorous growth at a rate higher than the indigenous vegetation. Some areas were observed to be critically modified as a result of encroachment by exotic species resulting from removal of natural regeneration and bank erosion.

The ecologically important plant species that were identified in the basin included 33 indicator species, 18 keystone species and 11 ecosystem engineers. Socio-economically important plant species include 33 species used as a source of food, 30 species used for medicinal purposes and 15 species used for construction material.

Different flow regimes were considered in the Pangani River basin and they differ with seasons. The flow regimes considered included median flow during the dry and short rain seasons which give the typical flows (cumecs) during the dry season and short rain season, the 7-day minimum flow (cumecs) during the dry season and the short rain seasons which gives a sense of typical low flows during low flow periods, the duration of flow (days) indicating the duration of flows higher than the mean flow during the long rain season, the median flow (cumecs) during the long rains represent the flows higher than the mean flow during the long rains giving a sense of typical high flows, and small flood peaks during the long rains which show the relative stage height of the largest flood peak during the long rains giving a sense of the typical magnitude of high flows.

The response curves developed for representative species could in general terms be grouped according to species growth forms and their lateral distribution on the river cross-section giving three growth forms (trees, shrubs and herbs) and three laterals/cross-sectional zones (aquatic, wet bank and dry bank). Each of the three growth forms and their representative species for each zone seem to respond differently depending on their position on the river cross-section. The curves were then used as input into the preparation of the Pangani Flow Assessment Tool

Aquatic species seem to be more negatively affected by decrease in the 7-day minimum flow and frequency of small flood peaks. On the other hand wet and dry bank species with deep roots tend to be more affected by increasing frequency of flood peaks and duration of flow. Increase in the frequency of flood peaks tend to wash away regenerants and seeds of wet and dry bank species thus suppressing their establishment. Aquatic plants would dry out with decreasing 7-day minimum flow especially during the dry season.

Most of the species of the aquatic system are likely to be impacted more by decreases in the 7day minimum flow and to some extent the median discharge especially in the dry season. Both species may be affected by duration of flood either negatively or positively. The wet bank species will experience higher impact from fluctuations in the frequency of small flood peak. Frequent flood peaks can suppress regeneration of most wet bank species due to frequent wash out of seedlings and seeds. Deep rooted dry and wet bank species can withstand reduced median flow and sometimes reduced 7-day minimum flows during the dry season. Frequency of flood peaks and prolonged flooding during the rain season (flooding duration) will likely suppress wet and bank species which are not adapted to flooded conditions through possible suffocation. The dynamics of flow regimes will therefore influence survival of plants differently depending on the characteristics of plant species. Further studies should focus on determining the environmental correlates of different plant species distribution to be able to filter out the impacts of different water regimes from other environmental factors. Clear determination of the plant representative species in the four lateral sections of the river i.e. water column, wet bank and dry bank is necessary for more clear understanding of the different responses by different species

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
TABLE OF CONTENTS	4
LIST OF TABLES	5
LIST OF FIGURES	5
1.0 INTRODUCTION	6
1.1 Background to the study	6
1.2 Objectives of the Study	6
2.0 SUMMARY DESCRIPTION OF THE PANGANI CATCHMENT	7
2.1 Geology, geomorphology and drainage	7
2.2 Climate	7
2.3 Hydrology	7
2.4 Vegetation and land cover	8
2.5 Human settlement and land use	8
3.0 VEGETATION OF THE PANGANI RIVER ECOSYSTEM	.10
3.1 Riverine Vegetation	10
3.1.1 Terrestrial Vegetation	.10
3.1.2 Aquatic Plants and Emergents	
3.2 Longitudinal Distribution of Vegetation	
3.2.1 The mountain stream zone	
3.2.2 The Upper Foothill Zone	
3.2.3 The Lower Foothill Zone	
3.2.4 The Rejuvenated Bedrock Cascade	
3.2.5 The Mature Lowland River	
3.2.6 The Estuary	
3.3 Lateral Distribution of Riverine Vegetation	
3.3.1 Mountain Stream Zone	
3.3.2 Upper Foothill Zone	
3.3.3 Lower Foothill Zone	
3.3.4 Rejuvenated Bedrock Cascade Zone	
3.3.5 Mature Lowland River Zone	
3.3.6 The Estuary	
3.4 Azonal Vegetation: Wetlands and Floodplains	
3.5 Changes from Natural Vegetation and its Drivers	
4.0 ECOLOGICALLY IMPORTANT SPECIES	
4.1 Indicator species	30
4.2 Keystone species	
4.3 Ecosystem engineers	
5.0 SOCIO - ECONOMICALLY IMPORTANT PLANT SPECIES	
5.1 Food plants	.33
5.2 Plants used as construction material	
5.3 Plants used for medicinal purposes	
6.0 SPECIES RESPONSE TO FLOW	
6.1 Species attributes linked to flow	
6.2 Conceptual Models – Response Curves	
6.2.1 Response Curves for Selected Plant Species in the Mountain Stream Zone Panga	
River Basin	

	6.2.2	Response Curves for Selected Plant Species in the Upper Foothill Zone Pangani	
		River Basin	.52
	6.2.3	Response Curves for Selected Species in the Lower Foothill Zone	.62
	6.2.4	Response Curves for Selected Species in the Rejuvenated Bedrock and Mature	
		Lowland River Zone Pangani Basin	.69
	6.2.5	Response Curves for Selected Species in the Estuary Zone Pangani River Basin	.75
7.0	CO	NCLUSION AND RECOMMENDATIONS FOR FURTHER	
	RES	SEARCH	.79
REF	FEREN	CES	.80

LIST OF TABLES

Table 1	Composition and number of terrestrial plant species occurring in the Pangani ri	ver
	system	11
Table 2	Aquatic and emergent plant species of the Pangani River system	15
Table 3	Species of the mountain stream zone of the Pangani River system	16
Table 4	Species of the upper foothill zone of the Pangani River system	18
Table 5	Species of the lower foothill zone of the Pangani River system	20
Table 6	Species of the Rejuvenated Bedrock Cascade zone of the Pangani River system.	22
Table 7	Species of the mature lowland zone of the Pangani River system	23
Table 8	Species of the Estuary zone of the Pangani River system	26
Table 9	Plant species of the wetlands and floodplain communities	29
Table 10	Indicator Plant Species in the Pangani River Basin	31
Table 11	Keystone Plant Species of the Pangani River Basin	32
Table 12	Plant Species identified to be a source of food in the Pangani River Basin	34
Table 13	Plant species used for medicinal purposes in the Pangani River basin	35
Table 14	Species attributes linked to flow in the Pangani River basin	36

LIST OF FIGURES

Figure 1	The Pangani River Basin showing the different Ecozones	9
Figure 2	Proportion of species in different growth forms of Terrestrial Riparian Plant	
	Species of the Pangani River system	.10
Figure 3	Proportion of species in different growth forms of aquatic and emergent plant	
	species of the Pangani River system	.14
Figure 4	Distribution of terrestrial and aquatic plant species in the different zones of the	
	Pangani River Basin	.24
Figure 5	Distribution of different plant growth forms in the different zones of the Pangan	
0	River System	.25

1.0 INTRODUCTION

1.1 Background to the study

The Pangani Basin Water Office (PWBO) and the World Conservation Union (IUCN) are implementing the Pangani River Basin Management Project, which is supported by the IUCN Water & Nature Initiative, UNDP/GEF and the European Union. The project has several components that will provide technical information and establish participatory processes to support water allocation in the basin.

The Pangani River Basin Flow Assessment (PRBFA) is one of the primary activities that will provide technical information to support water allocation. Its objective is to synthesize present knowledge of the river systems and its users and, in line with the new Tanzanian water policy, to create management tools that will help promote an integrated approach to future water-development and water-allocation decisions. Creation of the tools depends on a substantial investment in new understanding of the links between river flow, the quality of goods and services provided by the river, and the lives and livelihoods of the river users. The process of synthesizing present knowledge on the Pangani ecosystem has begun.

This synthesis has led to identification of a series of specialist studies that are needed to further enhance understanding of the river system and the people of the basin, one of which a focus on exploring how plant species' abundance and distribution may change as a result of alteration of freshwater flow patterns.

1.2 Objectives of the Study

The objectives of this vegetation study were to:

- describe the relationships between the timing and magnitude of freshwater flows in the Pangani system and the biology and life-history characteristics of its key plant species;
- use these relationships to infer what the historic abundance levels and distribution patterns were for these species in the Pangani catchment (where such information is lacking);
- predict how abundance and distribution patterns may change in the future under altered flow patterns.

2.0 SUMMARY DESCRIPTION OF THE PANGANI CATCHMENT

2.1 Geology, geomorphology and drainage

The Pangani River drains the southern side of Africa's greatest mountain (Mt Kilimanjaro) as well as its neighbor (Mt Meru) and a large part of the Pare and Usambara Mountains of the famous Eastern Arc chain in Tanzania. The Pangani River Basin covers about 42,000 km² and is shared by Kenya and Tanzania. While the principal sub-catchments of the Pangani are mountainous areas of high precipitation, the main river channel runs through the dry Maasai Steppe of northern Tanzania where rainfall rarely exceeds 500 mm per annum (Figure 1)

Geomorphologically, the Basin constitutes of two units, namely, the highlands and the lowlands also called the "Maasai steppe". The highlands, which comprise steeply sloping mountain terrain rising from 1,000 m to over 2,000 m above sea level are characterized by abundant rainfall (1,200-2,000 mm), high biodiversity, intensive cultivation, urbanization and densely populated rural areas. The highlands hold more than 80% of the basin's inhabitants (IUCN, 2003) and annual population growth rates reach 4%. The lowlands, which comprise of low sloping terrain generally below 1,000 m descending to the coastal plain, receive relatively low rainfall (<500 mm per year), and are characterized by low species biodiversity, scattered croplands, arid rangelands and smaller settlement areas. The population growth rates on the lowlands are close to 2% on average. The coastal plain, with its eastern African coastal and mangrove forests are characterized by high rainfall and species diversity.

2.2 Climate

The climate in the catchment varies considerably, and the Pangani River Basin comprises several sub-catchments of widely different characteristics. The upper parts in the slopes of Mt. Kilimanjaro and Mt. Meru receive 1200-2000 mm rainfall per year, and the rest of the catchment area receives only about 500 mm per year. There are two distinct rainy seasons: a short one from mid October to December and a long one from mid March to June.

2.3 Hydrology

The administrative area of Pangani Basin is situated in the north-east of the country and its rivers drain into the Indian Ocean. The basin consists of four rivers; Umba, Sigi, Msangazi and Pangani River. Of the whole basin the Pangani River, dominates the basin. The catchment covers three regions; Kilimanjaro, Arusha and Tanga. A small part of the catchment is located in Kenya. In Pangani Basin the main abstractions are from surface water (about 95 percent), but the remaining water is taken from ground water sources. There is a significant amount of groundwater potential compared to the other basins in the country. Irrigation is the main ground water user, and accounts for 80 percent of the total abstractions. Boreholes yielding more than 100 cubic metres per hour have been drilled in Kahe plains while boreholes yielding between 10 to 50 m³ h⁻¹ are in Sanya plains and Karoo rocks of Tanga. Groundwater recharge is mainly from rainfall and rivers. The hydrology of the Pangani is characterized by fairly continuous flows though skewed towards low flows given the fact that the short rains have drastically decreased all over the basin over time. The river has several areas of groundwater recharge along its course which may influence flow in the river especially in the lowlands. On the other hand the river also gains from spring discharges such as the Rundugai and Miwaleni springs which makes it a gaining river at some points ...

The mean annual flow of the Pangani has decreased over the last four decades but averaged 37 m³ s⁻¹ (IUCN, 2003) although this has been drastically reduced in recent years. The main north-western tributary of the Pangani (the Kikuletwa River) brings slightly sodic waters from the volcanic slopes of Mt Meru and Mt Kilimanjaro while the other northern tributary, the Ruvu River, drains a complex area in Kenya and Tanzania that surrounds Lake Jipe on the international border.

2.4 Vegetation and land cover

The Pangani River basin consists of a variety of vegetation types along its different parts as it flows from the high altitudes on Mts. Kilimanjaro and Meru to the coastal plain. The basin is composed of a relatively intact high forest ecosystem (evergreen forest) on the upper catchment passing through grassland vegetation and cultivated land with different agricultural crops in the middle to lower zone to coastal vegetation as it approaches the ocean. Over the last three decades the Pangani River catchment has undergone major changes in land use/cover, population, agriculture, and socio-economic aspects (Missana, *et al.*, 2003). Much of the original forested zone has been cut and converted to farmlands. The catchment has seen, since the 1960s, changes from traditional farming and pastoralism to irrigation and plantation agriculture mixed with pastoralism (Shishira, 2002), which eventually led to reduced land cover in the catchment (Yanda & Shishira. 1999). At their core, these changes relate to an increasing population against a background of high levels of poverty. The threats faced by the catchment's resources are almost all related to over-exploitation.

2.5 Human settlement and land use

The Pangani River basin has experienced substantial population growth in most parts of the catchment, and it would seem rational to link the water problems to population increases, growing water demand and degradation of water source catchments. Nevertheless, the reasons may be manifold and vegetation cover change seems to form part of such an explanation (Brandon & Bottomley, 1998; Chen, 2000; Diouf & Lambin, 1994; Kuntz & Siegert, 1999).

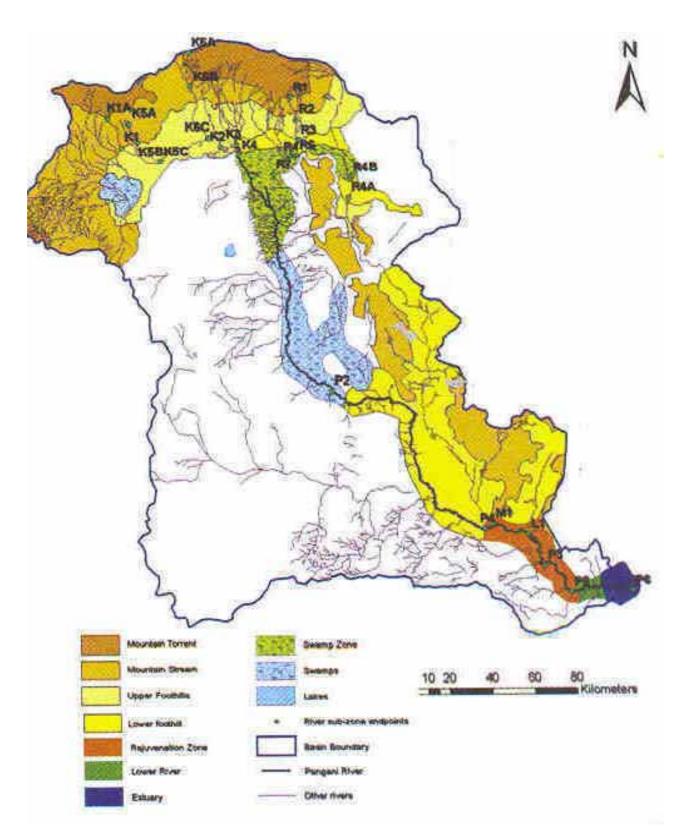


Figure 1 The Pangani River Basin showing the different Ecozones

3.0 VEGETATION OF THE PANGANI RIVER ECOSYSTEM

The descriptions provided here are not of communities, which are ecological assemblages of species that are structured around species interactions and environmental conditions. Rather the descriptions are of species whose distribution co-incide with different geographic and physiographic regions or zones along the Pangani River Basin.

3.1 Riverine Vegetation

The riverine vegetation of the Pangani River ecosystem is composed of terrestrial, aquatic and emergent plant species of different growth forms growing in different lateral zones of the river.

3.1.1 Terrestrial Vegetation

The terrestrial riparian vegetation communities of the Pangani river system consist of a wide range of tree, shrub, herb, climbers/liana species as well as ferns, and reeds (Table 1, Figure 1) (IUCN, 2006a, IUCN 2006b). Herb species make the biggest proportion (25%) followed by trees and shrubs (21%), lianas (19%), grasses (12%), ferns and reeds (1%). There are about 32 tree species that occur in the Pangani River system. The number of herb species is 36. On the other hand the number of shrub, lianas/climbers and grass/fern/reed species is 32, 29 and 18 respectively (Table 1, Figure 2).

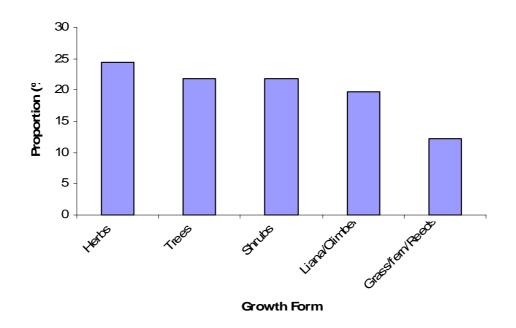


Figure 2 Proportion of species in different growth forms of Terrestrial Riparian Plant Species of the Pangani River system

Growth Form	SN	Species	Origin	Family
Trees	1	Acacia albida	Indigenous	Mimosaceae
	2	Acacia robusta	Indigenous	Mimosaceae
	3	Albizia gummifera	Indigenous	Mimosaceae
	4	Albizia petersiana	Indigenous	Mimosaceae
	5	Annona senegalensis	Exotic	Annonaceae
	6	Bombax rhodognaphalon	Exotic	Bombacaceae
	7	Boscia angustifolia	Indigenous	Capparidaceae
	8	Aneilema aequinoctiale	Indigenous	Commelinaceae
	9	Bridelia cathartica	Indigenous	Euphorbiaceae
	10	Bridelia micrantha	Indigenous	Euphorbiaceae
	11	Cocos nucifera	Indigenous	Palmae
	12	Commiphora pteleifolia	Indigenous	Burseraceae
	13	Cordia abyssinica	Indigenous	Boraginaceae
	14	Cordia sinensis	Indigenous	Boraginaceae
	15	Cussonia arborea	Indigenous	Araliaceae
	16	Flacourtia indica	Indigenous	Flacourtiaceae
	17	Garcinia livingstonei	Indigenous	Guttiferae
	18	Grevilea robusta	Indigenous	Proteaceae
	19	Haplocoelium foliolosum	Indigenous	Sapindaceae
	20	Kigelia africana	Indigenous	Bignoniaceae
	21	Lecaniodiscus fraxinifolius	Indigenous	Sapindaceae
	22	Maytenus mossambicensis	Indigenous	Celastraceae
	23	Markhamia lutea	Indigenous	Bignoniaceae
	24	Parkia filicoidea	Indigenous	Mimosaceae
	25	Rauvolfia caffra	Indigenous	Apocynaceae
	26	Sapindus saponaria	Indigenous	Sapindaceae
	27	Sclerocarya birrea ssp.caffra	Indigenous	Anacardiaceae
	28	Spyrostachys africana	Indigenous	Euphorbiaceae
	29	Strychnos henningsii	Indigenous	Loganiaceae
	30	Trema orientalis	Indigenous	Typhaceae
	31	Turraea holstii	Indigenous	Mimosaceae
	32	Ziziphus pubescens	Indigenous	Rhamnaceae
Herbs	1	Abutilon mauritianum	Indigenous	Malvaceae
	2	Acalypha ornate	Indigenous	Euphorbiaceae
	3	Acalypha fruticosa	Indigenous	Euphorbiaceae
	4	Achyranthes aspera	Indigenous	Amaranthaceae
	5	Ageratum conyzoides	Indigenous	Compositae
	6	Aloe lateritia	Indigenous	Aloaceae
	7	Amaranthus hybridus	Indigenous	Amaranthaceae
	8	Bidens pilosa	Indigenous	Compositae
	9	Blumea aurita	Indigenous	Compositae
	10	Boerhavia repens	Indigenous	Nyctaginaceae
	11	Calanchoe prittwitzii	Indigenous	Caesalpiniaceae
	12	Cassia mimosoides	Indigenous	Caesalpiniaceae
	13	Cenna spectabilis	Indigenous	Caesalpiniaceae
	14	Commelina beghalensis	Indigenous	Commelinaceae
	15	Corchorus aestuans	Indigenous	Tiliaceae
	16	Crotalaria laburnifolia	Indigenous	Papilionaceae
	17	Galinsona parviflora	Indigenous	Compositae

Table 1Composition and number of terrestrial riparian plant species occurring in the
Pangani river system

Growth Form	SN	Species	Origin	Family
Herbs	18	Heliotropium indicum	Indigenous	Boraginaceae
	19	Hibiscus micranthus	Indigenous	Malvaceae
	20	Justicia betonica	Indigenous	Acanthaceae
	21	Justicia glabra	Indigenous	Acanthaceae
	22	Krinum kirkii	Indigenous	Liliaceae
	23	Melanthera scandens	Indigenous	Compositae
	24	Plectranthus kilimandscharica,	Indigenous	Labiatae
	25	Prunus africana	Indigenous	Rosaceae
	26	Rubus pinnatus	Indigenous	Rosaceae
	27	Rubus rosifolius	Indigenous	Rosaceae
	28	Saccharum officinarum	Indigenous	Compositae
	29	Sida cordifolia	Indigenous	Malvaceae
	30	Solanum incanum	Indigenous	Solanaceae
	31	Spermacoce laevis	Indigenous	Ribiaceae
	32	Spilanthes filicaulis	Indigenous	compositae
	33	Talinum portulacifolium	Indigenous	Portulaceae
	34	Urtica massaica.	Indigenous	Urticaceae
	35	Vangueria madagascariensis	Indigenous	Rubiaceae
	36	Withania homnifera	Indigenous	Solanaceae
Shrubs	1	Allpohylus africanus	Indigenous	Sapindaceae
onrubs	2	Antidesma venosum	Indigenous	Euphorbiacea
	3	Asystasia gangetica	Indigenous	Acanthaceae
	4	Bauhinia tomentosa	Indigenous	Caesalpiniaceae
	5	Chaetachme aristata	Indigenous	Ulmaceae
	6	Clausena anisata	Indigenous	Rutaceae
	7	Clerodendrum rotundifolia	Indigenous	Tiliaceae
	8	Combretum pentagonum	Indigenous	combretaceae
	9	Flueggea virosa	Indigenous	Euphorbiaceae
	10	Grewia conocarpa	Indigenous	Passiforacea
	10	Grewia mollis	Indigenous	Passiforacea
	11	Harrisonia abyssinica	Indigenous	Simaroubaceae
	12	Gardenia transvenulosa	Indigenous	Rubiaceae
	13	Leonotis mollissima	Indigenous	Labiatae
	14	Macrula Africana	Indigenous	Moraceae
	15	Maytenus senegalensis	Indigenous	Celastraceae
	17	Ormocarpum kirkii		
	17	Paveta stenocepala	Indigenous	Papilionaceae Rubiaceae
	18		Indigenous	
		Phoenix reclinata Pluchea dioscoridis	Indigenous	Palmae
	20		Indigenous	Bignoniaceae
	21	Rinorea elliptica	Indigenous	Vitaceae
	22	Rothmannia urcelliformis	Indigenous	Rubiaceae
	23	Tabernaemontana holstii	Indigenous	Apocynaceae
	24	Teclea nobilis	Indigenous	Rutaceae
	25	Teclea simplicifolia	Indigenous	Rutaceae
	26	Thespesia danis	Indigenous	Malvaceae
	27	Toddalia asiatica	Indigenous	Rutaceae
	28	Uvaria scheffleri	Indigenous	Annonaceae
	29	Uvaria dependens	Indigenous	Annonaceae
	30	Vernonia amygdalina	Indigenous	Bignoniaceae
	31	Vernonia hildebrandtii	Indigenous	Bignoniaceae
	32	Vernonia subuligera	Indigenous	Bignoniaceae

Growth Form	SN	Species	Origin	Family
Liana/Climber	1	Acacia brevispica	Indigenous	Mimosaceae
	2	Astripomoea malvacea	Indigenous	Convolvulaceae
	3	Caesalpinia bonduc	Indigenous	Caesaipiniaceae
	4	Cenesio stuhlmannii	Indigenous	Compositae
	5	Ceropergia distincta	Indigenous	Asclepiadaceae
	6	Cissampelos pereira	Indigenous	Mimosaceae
	7	Cissus cordifolia	Indigenous	Vitaceae
	8	Cissus intergrifolia	Indigenous	Vitaceae
	9	Cissus quandrangularis	Indigenous	Vitaceae
	10	Cissus rotundifolia	Indigenous	Vitaceae
	11	Flabellaria paniculata	Indigenous	Malpighiaceae
	12	Flagellaria guineensis	Indigenous	Flagellariaceae
	13	Ipomoea pes- capreae	Indigenous	Convolvulaceae
	14	Glycine wightii	Indigenous	Papilionaceae
	15	Mascarenhasia arborescens	Indigenous	Apocynaceae
	16	Mondia ecornuta	Indigenous	Asclepiadaceae
	17	Mormodica foetida	Indigenous	Cucurditaceae
	18	Mucuna pruriens	Indigenous	Papilionaceae
	19	Passiflora edulis	Indigenous	Passifloraceae
	20	Pergularia daemia	Indigenous	Apocynaceae
	21	Pillaea adiantoides	Indigenous	Adiantaceae
	22	Rhynchosia micrantha	Indigenous	Papilionaceae
	23	Saba comorensis	Indigenous	Apocynaceae
	24	Rubia cordifolia	Indigenous	Ribiaceae
	25	Salacia madagascariensis	Indigenous	Celastraceae
	26	Smilax anceps	Indigenous	Smilacaceae
	27	Solanecio angulatus	Indigenous	Bignoniaceae
	28	Strychnos cocculoides	Indigenous	Loganiaceae
	29	Vigna unguiculata	Indigenous	Papilionaceae
Grass/fern/reeds	1	Brachiaria serrata	Indigenous	Gramineae
Glass/ Icili/ Iccus	2	Chloris gayana	Indigenous	Gramineae
	3	Cynodon dactylon	Indigenous	Gramineae
	4	Cynodon inlemfuens	Indigenous	Gramineae
	5	Dacyloctenium geminatum	Indigenous	Gramineae
	6	Hyparrhenia filipendula	Indigenous	Compositae
	7	Paspalum scrobiculatum	Indigenous	Compositae
	8	Oplismenus hirtellus	Indigenous	Compositae
	9	Panicum maximum	Indigenous	Compositae
	10	Panicum trichocladum	Indigenous	
	10	Panicum inchociadum Pennisetum mezianum,	Indigenous	Compositae Compositae
	11	Pennisetum mezianum, Pennisetum purpureum	Indigenous	Compositae
	12	Rottboelia exaltata,	Indigenous	Compositae
	13	· · · · · · · · · · · · · · · · · · ·		
		Setaria homonyma	Indigenous	Compositae
	15	Sporobolus concimilis	Indigenous	Compositae
	16	Sporobolus pyramidalis	Indigenous	Compositae
	17	Stereospermum cunthianum	Indigenous	Bignoniaceae
	18	Urochloa panicoides	Indigenous	Compositae

3.1.2 Aquatic Plants and Emergents

Species of the aquatic vegetation were considered as those described as water loving and real aquatic plants. Some of these are also wet bank species. These include a variety of tree, shrub, liana, sedge, and grass species (Table 2, Figure 3). In this category there is one fern species, four grass species, two liana species, three shrub species, four tree species, four grass species, six herb species and seven sedge species. Sedges form the highest proportion (30%), followed by herbs (26%) trees (15%), grasses (15%), shrubs (13%), lianas (9%) and ferns (4%)

Generally there are 11 species that can be described as water loving, 16 species as real aquatics and one species as a salt lover. The water loving species occur in areas that are saturated or have high moisture content throughout the year and can be categorized as emergents and/or wet bank species in aquatic systems. On the other hand the aquatic plants occur in areas that have high soil moisture or under saturated conditions throughout the year and can be more or less submerged all the time. The aquatic plants and phytoplankton form the major photosynthesizing plants under water thus the major supply of nutrition to aquatic invertebrates/animals. The water loving plants on the other hand, apart from supplying food for aquatic organisms, may also provide shelter, cover and breeding/spawning sites for aquatic organisms.

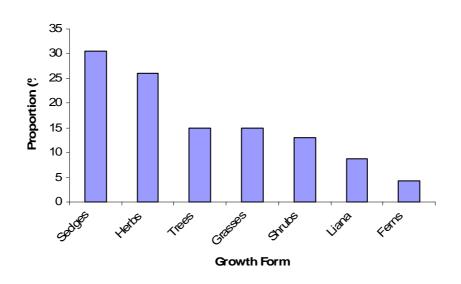


Figure 3 Proportion of species in different growth forms of aquatic and emergent plant species of the Pangani River system

Growth Form	Species name	Origin	Family
Trees	Acacia xanthophloea	Indigenous	Mimosaceae
	Barringtonia racemosa	Indigenous	Leythidaceae
	Celtis africana	Indigenous	Ulmaceae
	Ficus ingens	Indigenous	Moraceae
Shrub	Sesbania sesbans	Indigenous	Nymphaceae
	Suaeda monoica	Indigenous	Chenopodiaceae
	Psidium guajava	Indigenous	Myrataceae*
Herbs	Hibiscus cannabinus	Indigenous	Malvaceae
	Kanahia laniflora	Indigenous	Asclepiadaceae
	Ludwigia jussiaeoides	Indigenous	Onagraceae
	Mimosa pigra	Indigenous	Gramineae
	Nymphia retusa	Indigenous	Gramineae
	Polygonum senegalense	Indigenous	Polygonaceae
Grass	Leersia hexandra	Indigenous	Compositae
	Phragmites mauritianus	Indigenous	Compositae
	Costus afer,	Indigenous	Zingiberaceae
	Drymaria cordata	Indigenous	Caryophylaceae
Lianas	Mezoneuron angolense	Indigenous	Caesalpiniaceae
	Mikania cordata	Indigenous	Bignoniaceae
Sedges	Cyperus alticulatus	Indigenous	Cyperaceae
	Cyperus distans	Indigenous	Cyperaceae
	<i>Cyperus exaltatus</i>	Indigenous	Cyperaceae
	Cyperus papyrus	Indigenous	Cyperaceae
	Cyperus rotundus	Indigenous	Cyperaceae
	Fimbristylis ferruginea	Indigenous	Cyperaceae
	Kyllinga elata.	Indigenous	Cyperaceae
Ferns	Åcrostichum aureum	Indigenous	Adiantaceae

Table 2Aquatic and emergent plant species of the Pangani River system

3.2 Longitudinal Distribution of Vegetation

The component species of the Pangani River system are distributed differently from the upper to downstream zones. The Pangani river system has been classified into five zones, namely mountain stream, upper foothill, lower foothill, rejuvenating bedrock cascade, mature lowland river and the estuary (IUCN 2006a & b; PBWO/IUCN, 2007). Each of these zones represents specific characteristics of the system and has different plant species and vegetation community composition and distribution (Table 3 – 7, Figures 4 & 5).

3.2.1 The mountain stream zone

This zone may be taken to represent the uppermost zone of the Pangani River system (Figure 1). Most of the species are terrestrial making a total of 77 plant species in this zone. On the other hand the aquatic/emergent plants compose seventeen species (Table 7).

SN	Species	Family	Growth	In Water	Wet	Dry
		5	Form	Column	Bank	Bank
1	Adenia rumicifolia	Menispermaceae	Liana			
2	Albizia schimperana	Mimosaceae	Tree			
3	Albizia gummifera	Mimosaceae	Tree			
4	Agave sisalana	Agavaceae	Herb			
5	Allophylus africanus	Sapindaceae	Shrub			
6	Acalypha ornata	Euphorbiaceae	Herb			
7	Ageratum conyzoides	Compositae	Herb			
8	Aneilema aequinoctiale	Commelinaceae	Herb			
9	Argemone mexicana	Papaveraceae	Herb			
10	Asystacia gangetica	Acanthaceae	Herb			
11	Aloe latertia	Acanthaceae	Herb			
12	Annona senegalensis	Annonaceae	Tree			
13	Bauhnia tomentosa	Caesalpiniaceae	Shrub			
14	Biden pilosa	Compositae	Herb		\checkmark	
15	Blumea aurita	Compositae	Herb			
16	Bridelia micrantha	Euphorbiaceae	Tree		\checkmark	
17	Caesalpinia decapitala	Caesalpiniaceae	Liana			\checkmark
18	Caesalpinia bonduc	Caesalpiniaceae	Liana			
19	Calanchoe prittwitzii	Caesalpiniaceae	Herb			
20	Cenecio stuhlmanii	Ericaceae	Climber		\checkmark	
21	Citrus limone	Rutaceae	Tree			
22	Cordia abyssinica	Boragnaceae	Tree			
23	Canna indica	Cannaceae	Herb			\checkmark
24	Cassia didymobotria	Caesalpiniaceae	Shrub			
25	Cassia floribunda	Caesalpiniaceae	Shrub			\checkmark
26	Chloris gayana	Compositae	Grass		\checkmark	
27	Clerodendrum rotindifolia	Boragnaceae	Shrub			
28	Comelina benguelensis	Comelinaceae	Herb			
29	Cordia abyssinica	Boragnaceae	Tree			
30	Costus afer	Zingiberaceae	Herb			
31	Croton macrostachyis	Euphorbiaceae	Tree			
32	Cyperus rotundus	Cyperaceae	Herb/Sedge	\checkmark		
33	Dalbergia odovata	Caesalpiniaceae	Tree			

Table 3Species of the mountain stream zone of the Pangani River system

34	Desmodium repandum	Leguminosae	Herb			\checkmark
35	Digitaria milanjiana	Poaceae	Herb/Grass			
36	Drymaria cordata	Caryophylaceae	Herb			
37	Englerophytum natalense	Sapotaceae	Shrub			
38	Ficus capreifolia	Moraceae	Tree			
39	Ficus exasperate	Moraceae	Tree			
40	Ficus mucosa	Moraceae	Shrub			
41	Ficus valis-choudae	Moraceae	Tree			
42	Ficus thoningii	Moraceae	Tree		V	
43	Flabellaria paniculata	Malpighiaceae	Climber			V
44	Flacourtia indica	Flacourtiaceae	Tree			V
45	Galisona parviflora	Compositae	Herb			Ń
46	Grevillea robusta	Proteaceae	Tree			Ń
47	Impatiens nana	Balsaminaceae	Herb			,
48	Justicia betonica	Acanthaceae	Herb		,	
49	Kyllinga elata	Cyperaceae	Sedge			,
50	Lantana camara	Verbenaceae	Shrub		v v	
51	Leucaena glauca	Fabaceae	Tree		,	v v
52	Mezoneuron angolense	Caesalpiniaceae	Liana			V
53	Markhamia lutea	Bignoniaceae	Tree			V
54	Mondia ecomuta	Asclepideaceae	Liana			V
55	Momordica foetida	Cucurbitaceae	Liana			√ √
56	Oplismenus hirtellus	Graminae				N
50 57		Rubiaceae	Grass Shrub			N
	Pavetta stenocephala					N
58	Panisetum mezianum	Graminae	Grass			N
59	Pergularia daemia	Apocynaceae	Liana			N
60	Panicetum parpureum	Graminae	Grass			N
61	Pillea adiantoides	Adiantaceae	Climber			N
62	Prunus africana	Rosaceae	Tree	,	i	N
63	Phragmites mauritianus	Compositae	Grass		N	
64	Polygonum senegalensis	Polygonaceae	Grass		N	,
65	Raufolvia caffra	Apocinaceae	Tree			N
66	Rubia cordifolia	Rubiaceae	Climber			V
67	Rubus pinatus	Rosaceae	Herb			V
68	Rubus rosifolius	Rosaceae	Herb			N
69	Rothmania urcellifomis	Rubiaceae	Shrub			N
70	Spermacose laevis	Rubiaceae	Herb			
71	Spilanthes filicaulis	Compositae	Herb			
72	Sporobulus pyramidalis	Graminae	Grass			
73	Sida cordifolia	Malvaceae	Herb			
74	Smilax anceps	Smillacaceae	Climber			
75	Solanecio angulatus	Bignoniaceae	Climber			
76	Sorindeia madagascariensis	Anacardiaceae	Tree			
77	Strychnos cocculoides	Loganiaceae	Liana			
78	Syzigium cumini	Myritaceae	Tree			
79	Suaeda monoica	Chenopodiaceae	Shrub			
80	Teclea symplifolia	Rutaceae	Shrub			
81	Todalia asiatica	Rutaceae	Shrub			
82	Trema orientalis	Ulmaceae	Tree			V
83	Trimeria grandifolia	Flacourtiaceae	Tree			V
SN	Species	Family	Growth	In Water	Wet	Dry
	1 -		Form	Column	Bank	Bank
84	Turaea holstii	Meliaceae	Tree			
85	Thelipteris confluens	Thelypridaceae	Fern			Ń
86	Tithonia diversifolia	Bignoniaceae	Shrub			Ň
87	Vangueria madagascariensis	Rubiaceae	Tree	<u> </u>		v v
88	Vernonia sabuligera	Bignoniaceae	Shrub			1

3.2.2 The Upper Foothill Zone

The upper foothill zone vegetation composes 72 plant species with 65 terrestrial and seven aquatic/emergent species (Table 4).

SN	Species	Family	Growth Form	In Water Column	Wet Bank	Dry Bank
1	Abutilon mauritianum	Malvaceae	Herb			V
2	Acacia xanthoploea	Menispermaceae	Tree			
3	Achyranthes aspera	Amaranthaceae	Herb		V	
4	Albizi glaberima	Mimosaseae	Tree			
5	Adenia rumicifolia	Caryophylaceae	Liana			
6	Argemone mexicana	Papaveraceae	Herb			
7	Bombax rhodognaphalon	Bombacaceae	Tree			
8	Brachiaria serrata	Poaceae	Grass			
9	Celtis africana	Ulmaceae	Tree			
10	Cassia floribunda	Papilionaceae	Shrub			
11	Cenna spectabilis	Papilionaceae	Tree			
12	Commelina beghalensis	Commelinaceae	Herb			
13	Cissus integrifolia	Vitaceae	Climber			
14	Cissus quadrangularis	Vitaceae	Climber			
15	Cissus rotundifolia	Vitaceae	Climber			
16	Cissus cordifolia	Vitaceae	Climber			
17	Cupsicum frutescens	Piperaceae	Shrub			
18	Clausena anisata	Rutaceae	Shrub			
19	Comiphora pteleifolia	Burseraceae	Tree			
20	Cussonia arborea	Araliaceae	Tree			\checkmark
21	Cynodon lefuense	Poaceae	Grass			
22	Cyperus distans	Cyperaceae	Sedge	N		
23	Dactyloctenium geminatum	Poaceae	Grass			\checkmark
24	Drypetes gerardii	Euphorbiaceae	Tree			
25	Drypetes natalensis	Euphorbiaceae	Tree			\checkmark
26	Englerophytum natalense	Sapotaceae	Shrub			
27	Erythroccoca bongensis	Euphorbiaceae	Sedge			
28	Euphorbia nyikae	Euphorbiaceae	Tree			
29	Euphorbia tirucalli	Euphorbiaceae	Tree			
30	Ficus capreifolia	Moraceae	Tree			
31	Ficus exasperata	Moraceae	Tree			
32	Ficus sansibarica ssp sansibarica	Moraceae	Tree			
33	Ficus sur	Moraceae	Tree			
34	Ficus thoningii	Moraceae	Climber			
35	Ficus valischoudae	Balsaminaceae				
36	Ficus ingens	Thelypridaceae	Tree			
37	Glycine wightii	Leguminosae	Climber			
38	Grewia mollis	Tiliaceae	Shrub			
39	Grewia conocarpa	Tiliaceae	Shrub			

Table 4Plant Species of the Upper Foothill Zone of the Pangani River System

SN	Species	Family	Growth Form	In Water Column	Wet Bank	Dry Bank
40	Haplocoelium foliolosum		Tree			
41	Justicia glabra	Acanthaceae	Herb			
42	Kanahia laniflora	Compositae	Herb			
43	Kigelia africana	Bignoniaceae	Tree			
44	Lantana camara	Verbenaceae	Shrub			
45	Leonotis mollisma	Lamiaceae	Sedge			
46	Leucaena glauca	Fabaceae	Tree			
47	Panicum maximum	Graminae	Grass			
48	Manihot esculenta	Euphorbiaceae	Shrub			
49	Opuntia vulgaris	Cactaceae	Shrub			
50	Psychotria riparia	Bignoniaceae	Shrub			
51	Passiflora edulis	Passifloraceae	Climber			
52	Pennisetum mezianum	Poaceae	Grass			
53	Pluchea dioscoridis	Compositae	Shrub			
54	Polygonum senegalensis	Polygonaceae	Herb			
55	Rauvolfia caffra	Apocynaceae	Tree			
56	Ricinus communis	Euphorbiaceae.	Shrub			
57	Sensevieria ehrenbergii	Ruscaceae	Herb			
58	Setaria homonyma	Poaceae	Grass			
59	Solanum incanum	Solanaceae	Shrub			
60	Suaeda monoica	Chenopodiaceae	Shrub			
61	Sorindeia madagascariensis	Myrtaceae	Tree			
62	Tarbenaemontana pachysiphon	Caesalpiniaceae	Tree			
63	Tabernaemontana holstii	Apocynaceae	Tree			
64	Talinum portulacifolium	Portulacaceae	Herb			
65	Tithonia diversifolia	Asteraceae	Shrub			
66	Teclea nobilis	Rutaceae	Shrub			
67	Teclea simplicifolia	Rutaceae	Shrub			V
68	Trichilia emetica	Meliaceae	Tree			
69	Turraea holstii	Meliaceae	Tree			
70	Vangueria madagascariensis	Rubuaceae	Shrub			
71	Vernonia amygdalina	Bignoniaceae	Shrub		\checkmark	V
72	Withania somnifera	Solanaceae	Herb			

3.2.3 The Lower Foothill Zone

The lower foothill zone is the most species rich consisting of 104 plant species out of which 45 (43%) are aquatic/emergents. Note that the wet bank species are grouped into the aquatic species/emergents. As would be the case for the aquatic plant species the genus *Cyperus* is the most dominant (Table 9).

SN	Species	Family	Habit	In Water Column	Wet Bank	Dry Bank
1	Albizia glaberrima	Mimosaceae	Tree			
2	Albizia gummifera	Mimosaceae	Tree			
3	Acacia xanthoploea	Mimosaseae	Tree			
4	Acacia robusta	Mimosaseae	Tree			
5	Acrostichum aureum	Adiantaceae	Fern			
6	Acalypha omata	Euphorbiaceae	Herb			
7	Acalypha fruticosa	Euphorbiaceae	Herb			
8	Abutilon mauritianum	Malvaceae	Herb			
9	Achyranthes aspera	Amaranthaceae	Herb			
10	Asystasia gangetica	Acanthaceae	Herb			
11	Azidarachta indica	Meliaceae	Tree			
12	Barringtonia racemosa	Lecythidaceae	Shrub			
13	Cassia floribunda	Papilionaceae	Shrub			
14	Cassia mimosoides	Papilionaceae	Herb			
15	Ceropegia distincta	Asclepiadaceae	Climber			
16	Chaetachme aristata	Ulmaceae	Shrub			
17	Chloris gayana	Poaceae	Grass			
18	Cisampelos pareira	Menispermaceae	Climber			
19	Commelina beghalensis	Commelinaceae	Herb			
20	Cordia sinensis	Boraginaceae	Tree			
21	Culcasia esculenta	Rutaceae	Herb			
22	Cynodon dactylon	Poaceae	Grass			
23	Cynodon articulatus	Poaceae	Grass			
24	Čynodon lemfuense	Poaceae	Grass			
25	Cyperus alticulatus	Cyperaceae	Sedge			
26	Cyperus distans	Cyperaceae	Sedge			
27	Cyperus exaltatus	Cyperaceae	Sedge	\checkmark		
28	Cyperus payrus	Cyperaceae	Sedge			
29	Cyperus rotundus	Cyperaceae	Sedge			
30	Dactyloctenium germinatum	Poaceae	Grass			
31	Digitaria milanjiana	Poaceae	Grass			
32	Echinochloa scabra	Poaceae	Grass			
33	Ehretia amoena	Boraginaceae	Tree			
34	Eleis guineense	Fabaceae	Tree			
35	Eragrostis aspera	Poaceae	Grass			
36	Euclea natalensis	Ebenaceae	Shrub			
37	Ficus sur	Moraceae	Tree			
38	Ficus thoningii	Moraceae	Tree			
39	Ficus capreifolia	Moraceae	Tree			

Table 5Species of the lower foothill zone of the Pangani River system

SN	Species	Family	Habit	In Water Column	Wet Bank	Dry Bank
40	Ficus exasperata	Moraceae	Tree			
41	Hibiscus canabinus	Malvaceae	Herb			\checkmark
42	Hibiscus esculenta	Malvaceae	Herb			
43	Hibiscus micranthus	Malvaceae	Herb			
44	Fimbuistylis feruginea	Cyperaceae	Sedge			
45	Flagellaria guineensis	Flagellariaceae	Climber			
46	Flagellaria virosa	Flagellariaceae	Sedge			\checkmark
47	Garcinia livingstonei	Clusiaceae	Tree			
48	Gardenia transvenulosa	Rubiaceae	Shrub			
49	Harrisonia abyssinica	Rutaceae	Sedge			
50	Heliotropium indicum	Boraginaceae	Herb			
51	Hyparrĥenia filipendula	Poaceae	Grass			
52	Ipomoea pescaprae	Convolvulaceae	Climber			
53	Crinum kirkii	Amaryllidaceae	Herb			
54	Kyllinga elata	Cyperaceae	Sedge			
55	Ludwigia jussiaeoides	Onagraceae	Herb			
56	Leersia hexandra	Compositae	Grass			
57	Leonotis mollisma	Lamiaceae	Herb			
58	Macrula africana	Moraceae	Sedge			
59	Mascarenhasia arborescens	Apocynaceae	Liana			
60	Maytenus mossambicensis	Celastraceae	Tree			
61	Melanthera scandens	Asteraceae	Herb			
62	Mikania cordata	Compositae	Liana			
63	Mimosa pigra	Gramineae	Liana			
64	Mimusopsis fruticosa	Sapotaceae	Tree			
65	Momordica foetida	Cucurbitaceae	Liana			
66	Mucuna pruriens	Fabaceae	Liana			
67	Mondia ecomuta	Asclepideaceae	Liana			
68	Musa sp	Musaceae.	Shrub			
69	Nymphia retusa	Gramineae	Herb			
70	Opilia cettidifolia		Liana			
71	Panicum maximum	Poaceae	Grass			
72	Parkia filicoidea	Fabaceae	Tree			
73	Paullinia pinnata	Sapindaceae				
74	Paspalum scrobiculatum	Poaceae	Grass			
75	Pennisetum purpureum	Poaceae	Grass			
76	Phoenix reclinata	Palmae	Sedge			
77	Phragmites mauritianus	Compositae	Grass			
78	Plectranthus kilimandscharica	Lamiaceae	Herb			
79	Pluchea dioscoridis	Compositae	Shrub			
80	Polygonum senegalese	Polygonaceae	Herb			
81	Rauvolfia caffra	Apocynaceae	Tree			
82	Rynchosia micrantha	Fabaceae	Climber			
83	Ricinus communis	Euphorbiaceae	Shrub			
84	Rinorea eliptica	Moraceae	Shrub			

	Species	Family	Habit	In Water	Wet	Dry
				Column	Bank	Bank
85	Saba comorensis	Apocynaceae	Liana			
86	Saccharum officinarum	Poaceae	Herb			
87	Sapindus saponaria	Sapindaceae	Tree			
88	Sclerocarya birrea ssp caffra	Anacardiaceae	Tree			
89	Sesbania sesban	Leguminosae	Shrub			
90	Setaria homonyme	Graminae	Shrub			
91	Sorindeia madagascariensis	Anacardiaceae	Tree			
92	Solanum incanum	Solanaceae	Herb			
93	Sporobolus consimilis	Graminae	Grass			
94	Sporobolus pyramidalis	Graminae	Grass			
95	Spirostachys africana	Euphorbiaceae	Tree			
96	Suaeda monoica	Chenopodiaceae	Shrub			
97	Syzygium cumini	Myritaceae	Tree			
98	Trichilia emetica	Meliaceae	Tree			
99	Turraea holstii	Meliaceae	Tree			
100	Typha capensis	Typhaceae	Sedge			
101	Urochloa panicoides	Poaceae	Grass			
102	Urtica massaica	Urticaceae	Herb			
103	Vernonia hildebrandtii	Leguminosae	Shrub			
104	Zea mays	Graminae	Shrub			

3.2.4 The Rejuvenated Bedrock Cascade

This zone has a species richness of 17 of which two species are dry bank while the others are either aquatic or wet bank species (Table 6).

Table 6Species of the Rejuvenated Bedrock Cascade zone of the Pangani River
system

SN	Species	Family	Habit	In Water	Wet	Dry
	_			Column	Bank	Bank
1	Artocarpus integrifolius	Moraceae	Tree			
2	Cocos nucifera	Arecaceae	Tree			
3	Cynodon lemfuens	Poaceae	Grass			
4	Cyperus alticulatus	Cyperaceae	Sedge			
5	Cyperus rotundus	Cyperaceae	Sedge			
6	Dacyloctenium germinatum	Poaceae	Grass			
7	Digitaria milanjiana	Poaceae	Grass			
8	Echnocloa scabra	Poacea	Grass			
9	Eleis guineensis	Palmae	Tree			
10	Ficus sur	Moraceae	Tree			
11	Ipomea pescapreae	Convolvulaceae	Herb			
12	Kanahia laniflora	Asclepiadaceae	Herb			
13	Leersia hexandra	Compositae	Grass	\checkmark		
14	Panicum maximum	Poaceae	Grass			
15	Panicum tricocladum	Poaceae	Grass			
16	Phragmites mauritianus	Poaceae	Grass	\checkmark		
17	Sesbania sesban	Fabaceae	Shrub			

3.2.5 The Mature Lowland River

About 35 species were identified in this zone of which two are terrestrial and 12 are aquatic-wet bank species (Table 7).

SN	Species	Family	Habit	In Water Column	Wet Bank	Dry Bank
1	Acacia polyacantha	Mimosaceae	Tree			
2	Asystasia gangetica	Acanthaceae	Herb			
3	Barringtonia racemosa	Lecythidaceae	Tree			
4	Bombax rhodognaphalon	Bombacaceae	Tree			
5	Bridelia cathartica	Euphorbiacea	Tree			
6	Cassia mimosoides	Caesalpiniaceae	Herb			
7	Cissampelos pareira	Menispermaceae	Climber			
8	Commelina beghalensis	Commelinaceae	Herb			
9	Combretum pentagonum	Combretaceae	Shrub			
10	Corchorus aestuans	Tiliaceae	Herb			
11	Crotalaria labumifolia	Papilionaceae	Herb			
12	Cyperus distans,	Cyperaceae	Sedge			
13	Dichanthium caricosum	Poaceae	Grass			
14	Ficus capreifolia	Moraceae	Tree			
15	Ficus exasperata	Moraceae	Tree			
16	Ficus sur	Moraceae	Tree			
17	Hyparrhenia filipendula	Poaceae	Grass			
18	Kanahia laniflora	Asclepiadaceae	Herb			
19	Mangifera indica	Anacardiaceae	Tree			
20	Mascarenhasia arborescense	Apocynaceae	Liana			
21	Mikania cordata	Asteraceae	Liana			
22	Mucuna pruriens	Leguminosae	Liana			
23	Musa sp	Musaceae	Shrub			
24	Ormocarpum kirkii	Fabaceae	Sedge			
25	Nymphia retusa	Gramineae	Herb			
26	Parkia filicoidea	Fabaceae	Tree			
27	Paspalum scrobiculatum	Poaceae	Grass			
28	Pluchea dioscoridis	Compositae	Shrub			
29	Ricinus communis	Euphorbiaceae	Shrub			
30	Rottboellia exaltata	Poaceae	Grass			
31	Senna siamea	Caesalpinioideae	Tree			
32	Stereospermum kunthianum	Bignoniaceae	Grass			
33	Thespesia danis	Malvaceae	Shrub			
34	Thevetia peruviana	Apocynaceae	Fern			
35	Vigna unguiculata	Fabaceae	Climber			

n
1

Of the four zones, the lower foothill zone was the most species rich in terms of total numbers and aquatic plant species, while the upper foothill was the most species rich in terms of terrestrial plant species.

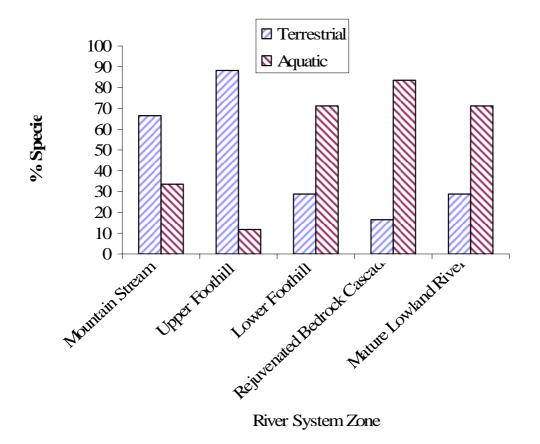


Figure 4 Distribution of terrestrial and aquatic plant species in the different zones of the Pangani River Basin

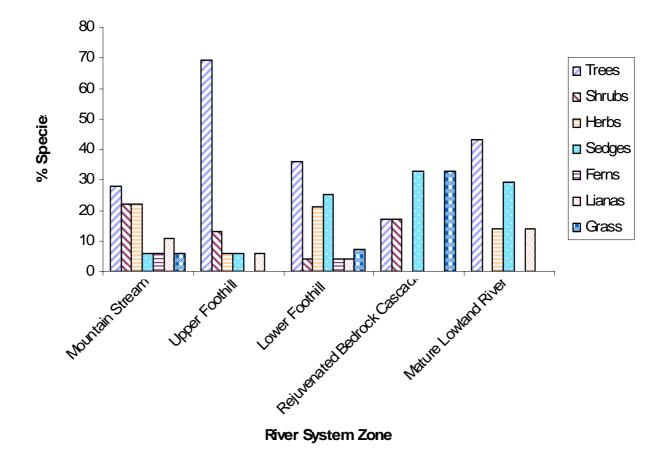


Figure 5 Distribution of different plant growth forms in the different zones of the Pangani River System

3.2.6 The Estuary

The principal vegetation types of the Pangani estuary are sedges, palms and Mangroves. Sedges and lilies are dominant in the upper reaches, while the middle and lower reaches are dominated by palms and mangroves respectively. There seems to be a strong zonation in these communities up the length of the estuary, presumably a function of the salinity distribution in the system. Mangroves of the Pangani estuary however make up only a small proportion of the total mangrove forest area in Tanzania. The mangrove species found in the Pangani estuary are listed in Table 12 (IUCN, 2006, Munishi 2007). Cocos nucifera is also a part of the estuary zone on high grounds where the soil is not saline

Table 8Species of the Estuary zone of the Pangani River system

SN	Species	Family	Habit	In Water	Wet	Dry
					bank	bank
1	Avicenia marina	Acanthaceae	Tree			
2	Bruguera gymnorrhza	Rhizophoraceae	Tree			
3	Ceriops tagal	Rhizophoraceae	Tree			
4	Herritiera littoralis	Sterculiaceae	Tree			
5	Lumnitzera racemosa	Combretaceae	Tree	V		
6	Rhizophora mucronata	Rhizophoraceae	Tree			
7	Sonneratia alba	Sonneratiaceae	Tree			
8	Xylocarpus grantum	Meliaceae	Tree	V		
9	Cocos nucifera	Palmae	Tree			

3.3 Lateral Distribution of Riverine Vegetation

The lateral distribution of the riverine communities described here is the distribution of the plant communities/species along the cross section of the river at specific sites selected to represent specific characteristics of the Pangani system. These zones represent the mountain stream, the upper foothill, the lower foothill, rejuvenated bedrock cascade, mature lowland river and the estuary.

3.3.1 Mountain Stream Zone

This zone is represented by Nduruma and Ona Rivers. This was chosen following the categories developed by IUCN (2006). The riparian width at Nduruma is 30 m and 5 m on the right and left hand bank respectively while on the Ona River it is relatively wide (70 m and 80 m on the right and left hand banks respectively). The riparian zone on the Nduruma River is critically modified through removal of natural vegetation, encroachment by exotic vegetation and bank erosion. On the other hand the riparian zone of the Ona River is relatively intact with no encroachment.

Both rivers can be described as having a straight, single thread channel, with mixed bedrock and alluvial channel type. The Nduruma River substratum is dominated by cobble and boulder while that of Ona river is dominated by bedrock and boulder. The reach type on both rivers is pool-rapid though the predominant reach type on Ona River is bedrock fall. The river make up on the Nduruma River can be summarized as a mix of riffle/rapid and run while on the Ona River it rapid and run in the wet season and a mix of riffle/rapid, run and pool in the dry season.

Trees, shrubs, sedges and grasses are represented in all the two rivers. Typically, sedges occur closer to the stream in more or less aquatic conditions while trees occur in more terrestrial conditions up the banks on the wet bank and dry bank habitats. Adenia rumicifolia, Abutilon mauritianum and Albizia schimperana are the most common dry bank species while Ficus capreifolia, Ficus exasperata, Ficus mucosa, Ficus valischoudae, and Ficus thoningii are the most dominant wet bank species. The aquatics in this zone include Kyllinga elata, Phragmites mauritianus and Polygonum senegalensis.

3.3.2 Upper Foothill Zone

This zone is represented by points along the Pangani system at Kikuletwa, Himo and Muraini (Mvuleni) Rivers. The riparian widths range from 10 m on the Himo River to 200 m on the Muraini (Mvuleni) River. The riparian zones at these points were critically modified on the Kikuletwa River while there are moderate modifications on Himo and Muraini Rivers. The modification results mainly from removal of natural vegetation, encroachment by exotic vegetation and river bank erosion though encroachment by exotic vegetation was not so evident in the Muraini River is relatively limited. Some areas on the Kikuletwa River are completely bare due to vegetation removal and livestock watering.

The Kikuletwa River has a multiple thread, sinuous channel, located within a broader floodplain while Himo River and Muraini River have straight, single thread channels. The substratum on the Kikuletwa River is a mixed bedrock and alluvial dominated by gravel. On the Himo River the substratum is dominated by cobble and boulders while the Muraini River substratum is alluvial dominated by cobble. The river makeup for Kikuletwa is run during the wet season becoming a mix of riffle/rapid, run and pool during the dry season. The makeup on the other rivers is a mix of riffle/rapid run and pool (IUCN 2006).

Trees, shrubs, reeds, sedges and grasses are represented in all rivers though sedges are less abundant at Himo River. At Muraini River the vegetation has a closed canopy dominated by Fig trees (*Ficus sp*) and minimum undergrowth of herbaceous plants.

The river make up is important determinant of what vegetation type and species would occur in the different sections. On riffles one would expect to find some rooted aquatic plants as there is a good possibility of soil and debris accumulation. On the other hand submerged aquatic plants are likely to occur on the pool section while on rapids and runs one would not expect much vegetation in the water column. The wet bank vegetation would thrive better on the pool sections due to prolonged water periods during the dry season when all other sections may have dried out especially in the case of ephemeral rivers.

Where the river is a pool one would expect to find more aquatic plants such as *Cyperus distans, Kanahia laniflora* and *Polygonum senegalensis* among others while on the riffle section one would expect more of the wet and dry bank species like *Acacia xanthophloea Ficus exasperata* and *Ficus sur* and *Albizi glaberima, Sorindeia madagascariensis Psychotria riparia* and *Celtis africana* respectively.

3.3.3 Lower Foothill Zone

This zone is represented by Kikuletwa River upstream of Nyumba ya Mungu dam below Tanzania Planting Company, Ruvu River at Kifaru, upstream of bridge, Pangani at Kirua swamp, Pangani River at Mkalamo village approximately 500 m upstream of bridge at bedrock rapid, Pangani river at Jambe village, 50 m, above confluence with outflow from the Pangani Falls Hydropower Station, Mkomazi River at Bendera, downstream of Kalimawe Dam and Luengera River at Kwamndolwa, old Korogwe.

Both sites have moderate to critical modifications resulting from removal of natural vegetation and river bank erosion. The riparian width varies from 5 m to over 100 m. In some cases the riparian zone is interfered by floodplain. With exception of Mkomazi River where there is extensive encroachment by exotic vegetation and some terrestrial plants the other sites have very limited encroachment. Trees, shrubs, reeds, sedges and grasses are represented with reeds and sedges dominating at the Mkomazi site.

The Kikuletwa River at this site has a multiple thread, sinuous channel, located within a broader floodplain. It has a mixed bedrock and alluvial channel with gravel as the dominant substratum. The Ruvu, Pangani, Mkomazi and Luengera Rivers at this zone have a straight, single thread channels. Ruvu River has an alluvial channel type, dominated by silt and clay, the Pangani has alluvial channel with silt, clay and sand as the dominant substrata, Mkomazi has sand as dominant substrata and the Luengera River has sand as the dominant substratum

The reach type for Kikuletwa is flat bedrock with a relatively smooth bed and no significant falls or rapids though it could also be considered regime. The summarized river make up is a run only in the wet season, becoming a mix of riffle/rapid, run and pool in the dry season. The rich type for Ruvu, Pangani Mkomazi and Luengera are regime, and the river make up is a run only in the wet season, becoming a mix of riffle and run in the dry season for Kikuletwa, run and pool for Pangani, run for Mkomazi and pool for Luengera. Dry and wet bank species like Albizia glaberrima, Sorindeia madagascariensis Trichilia emetica Ficus sur, Ficus capreifolia and Acacia xanthoploea would be more common because of rapid water movement in most of its sections. Some aquatic species such as Cyperus alticulatus, Cyperus exaltatus and Cyperus papyrus would be expected where the river is mostly a pool during the different seasons

3.3.4 Rejuvenated Bedrock Cascade Zone

The zone is represented by Pangani River downstream of Hale town. The zone is seriously modified because of removal of natural vegetation, and river bank erosion. Encroachment by exotic vegetation is limited. The riparian width is 5 m on the right hand bank and 5 m on the left hand bank. The river has a straight, multiple thread channels, although the side channel is relatively small compared to the main channel. It has a bedrock channel, with pools alternating with bedrock rapid areas making the reach type pool-rapid. The summarized river make up is a rapid and run. Trees, shrubs, sedges and grasses are represented. The riparian vegetation is severely exploited and the impact from rural development on vegetation is high. This type of river makeup would have a more abundant wet bank plant species due to fast water movement in most of its sections which makes the river bank drier and especially during the dry season. Species such as *Cyperus alticulatus, Cyperus rotundus* which are semi aquatic-wet bank may be found towards the water column while the real wet bank species would include *Ficus sur*

3.3.5 Mature Lowland River Zone

This section is represented by the Pangani River above the confluence of the point at which the outflow from the Pangani Falls Hydropower Station joins the river. The riparian width is 70 m on the right hand bank and 5 m on the left hand bank. There is limited encroachment by exotic vegetation in this zone and trees, shrubs, sedges and grasses are represented.

The river has a straight, single thread channel, with a bedrock channel. The reach type is poolrapid and the summarized river make-up is a mix of riffle/rapid, run and pool. This mixture of river make up is expected to allow a wide variety of plant species to occur from sub merged aquatics on the pool section such as *Cyperus distans, Kanahia laniflora* and *Cyperus rotundus* to wet and dry bank species such as Ficus *sur, Acacia polyacantha, Markhamia cordata and Barringtonia racemosa.*

3.3.6 The Estuary

The major vegetation type on the Pangani estuary is mangroves and mangroves are often considered the most important component of estuarine vegetation. Mangroves are known to be salt-tolerant tree species that occur on tropical and subtropical coastlines, especially in sheltered bays and around river mouths. Eight species of mangrove are reported (Kamugisha *et al.*, 2006) to occur in the Pangani basin, including *Avicernia marina, Bruguira gymnorrhza, Herritiera littoralis, Lumnitzera racemosa, Rhizophora mucronata, Sonneratia alba, Xylocarpus granatum and Ceriops tagal.* Further in raised grounds around the estuary where soil conditions are not too salty *Cocos nucifera* is a common plant species which is normally cultivated.

The mangrove forests on the Pangani estuary (3 800 ha) however account for only a small proportion of the total mangrove area in Tanzania (~108 000 ha) (Wang et al., 2003) but are nonetheless important for the ecology of the estuary and for sustaining fish and shrimp production in the neighboring coastal areas.

3.4 Azonal Vegetation: Wetlands and Floodplains

The wetland and flood plain areas are represented in various sections of the basin. Most notable areas are the Kirua swamp at the lower foothill section downstream of the Nyumba ya Mungu. Many of these areas are still inundated though at lower frequency than it used to be (IUCN 2006). There are various species occurring in this habitats (Table 9)

Species	Family	Habit	In Water	Wet bank	Dry
					bank
Acacia xanthophloes	Mimosaceae	Tree			
Dactyloctenium geminatum	Poaceae	Grass		V	
Cyperus alticulatus	Cyperaceae	Sedge		V	
Cyperus exaltatus	Cyperaceae	Sedge			
Cyperus distans	Cyperaceae	Sedge		V	
Typha capensis	Typhaceae	Sedge			
Phragmites mauritianus;	Compositae	Herb	\checkmark		
Ludwigia jussiaeoides	Onagraceae	Herb		V	
Pistia stratiotes	Araceae	Herb		V	
Eichhornia crassipes	Pontederiaceae	Herb			
Nymphaea retusa	Mimosacea	Herb			

Table 9Plant species of the wetlands and floodplain vegetation

3.5 Changes from Natural Vegetation and its Drivers

Different zones of the rivers show changes from natural vegetation cover to modified vegetation especially along the riparian zones. These changes are a result of human disturbances which lead to encroachment by exotic species. Areas which are severely disturbed normally become prone to exotic invasions as a result possible changes from their natural states. Exotic vegetation invasion is always taken as a major indicator of changes from natural to artificial habitats in the different sections/zones of the basin. Most of these changes seem to be human induced though in some cases natural regeneration of exotics would occur as a result of degradation of natural

vegetation giving the exotics a more competitive ability. Exotic species therefore exclude natural vegetation due to vigorous growth at a rate higher than the indigenous vegetation.

Some areas were observed to be critically modified as a result of encroachment by exotic species resulting from removal of natural regeneration and bank erosion. Areas like the Nduruma River (Mountain Stream Zone), encroachment by exotic vegetation was widespread and smaller areas were invaded by terrestrial plants. At Kikuletwa River (Upper Foothill zone), the riparian vegetation is critically modified because of the decrease of indigenous vegetation from the riparian zone, exotic vegetation encroachment and bank erosion though the impact on the riparian vegetation is localized. At Ona River, a Mountain Stream the riparian zone at the sampling point was almost bare due to removal of riparian vegetation and livestock watering though encroachment by exotics was limited. Other area that showed serious modification of the riparian ecosystem include the Ruvu River (lower foothill zone), Pangani River (the rejuvenated bedrock cascade and mature lowland river zones) and the Mkomazi River (a lower foothill zone). Some areas were moderately modified and not severely encroached by exotic vegetation including Muraini (Mvuleni) River (an upper foothill zone) and some parts of the Pangani River (a lower foothill zone)

4.0 ECOLOGICALLY IMPORTANT SPECIES

4.1 Indicator species

An indicator plant is usually plants that grow in some specific environment, allowing an assessment of soil and other conditions in a place. The usefulness of the concept of indicator species is that they can be used for biomonitoring of community or ecosystem change. Therefore, it is possible to assess the physiochemical characteristics of a site based upon the species composition present, which is very useful for monitoring change and detecting the cause(s) of change. Some species are indicators of water logged/flooded, moist/wetland conditions while others are indicators of salty environments and grow well in areas with high soil salt content. The mangrove vegetation are indicators of salty conditions where river water mixes with sea water and thus an indicator of estuarine conditions on river mouths and deltas On the other hand some plants are indicators of coastal warm climates and areas with high water table while others are indicators of dry/semi arid conditions. About 33 plant species in the Pangani basin were identified as indicators of flooded, saturated or salty conditions for part or most of the year (Table 10)

SN	Species	Indication
1	Cyperus alticularis	Moist, saturated, water logged conditions
2	Cyperus exaltatus	Moist, saturated, water logged conditions
3	Drymaria cordata	Moist, saturated, water logged conditions
4	Acrostichum aureum	Moist, saturated, water logged conditions
5	Fimbristylis feruginea	Moist, saturated, water logged conditions
6	Ludwigia jussiaeoides	Moist, saturated, water logged conditions
7	Hyphaene spp (Mikoche)	Moist, saturated, water logged conditions
8	Cyperus rotundus	Moist, saturated, water logged conditions
9	Cyperus distans	Moist, saturated, water logged conditions
10	Cyperus papyrus	Moist, saturated, water logged conditions
11	Costus afer	Moist, saturated, water logged conditions
12	Phragmites mauritianus	Moist, saturated, water logged conditions
13	Nymphae retusa	Moist, saturated, water logged conditions
14	Polygonum senegalense	Moist, saturated, water logged conditions
15	Makuruwila	Moist, saturated, water logged conditions
16	Leersia hexandra	Moist, saturated, water logged conditions
17	<i>Typha</i> sp.	Moist, saturated, water logged conditions
18	Kyllinger ellata	Moist, saturated, water logged conditions
19	Kanahia laniflora	Moist, saturated, water logged conditions
20	Phoenix reclinata (Kindu)	Moist, saturated, water logged conditions
21	<i>Ficus</i> sp.	Moist, saturated, water logged conditions
22	Euphorbia sp (Minyaa/ Miaa	Dry/semi arid conditions
23	Suaeda monoic	Salty conditions
24	Avicenia marina a	Salty conditions
25	Bruguira gymnorrhza	Salty conditions
26	Herritiera littoralis	Salty conditions
27	Lumnitzera racemosa	Salty conditions
28	Rhizophora mucronata	Salty conditions
29	Sonneratia alba	Salty conditions
30	Xylocarpus granatum	Salty conditions
31	Ceriops tagal	Salty conditions
32	Cocos nucifera (minazi)	Warm climates, sandy soil conditions
33	Milicia excelsa	Lowland forests, high water table

Table 10 Indicator Plant Species in the Pangani River Basin

4.2 Keystone species

A keystone species is a species that has a disproportionate effect on its environment relative to its abundance. An ecosystem may experience a dramatic shift if a keystone species is removed, even though that species was a small part of the ecosystem in terms of biomass or productivity. It has become a very popular concept in conservation biology. Keystone species affect ecosystem composition and structure in fundamental ways through trophic interactions (food webs and food chains), such that the removal of a keystone species has a disproportionate effect on the ecosystem by causing the local extinction of several to many other species, possibly leading to collapse of the ecosystem of which it is a part. The means by which Keystone Species affect ecosystem structure is through positive and negative effects on species that feed on, or are fed on by, other species in the community or ecosystem. The species that make up the mangrove ecosystem form a mix of keystone species that are important for breeding and survival of key marine and terrestrial organisms Table 11). Mangroves (Mikoko) are often considered the most important component of estuarine vegetation as they serve to trap landed-derived debris, sediment and suspended particulate matter carried down by rivers increasing the food required by benthic invertebrates. They are extremely productive ecosystems supplying food for different types of organisms and function as important feeding and nursery areas for a variety of invertebrates, fish and birds. On the other hand the river key stone species in wetlands and flood plains are important primary producers and are food source for grazing animals

SN	Species	Use/Location
1	Avicenia marina	Breeding of fish in estuaries, construction material
2	Bruguira gymnorrhza	Breeding of fish in estuaries, construction material
3	Herritiera littoralis	Breeding of fish in estuaries, construction material
4	Lumnitzera racemosa	Breeding of fish in estuaries, construction material
5	Rhizophora mucronata	Breeding of fish in estuaries, Construction material
6	Sonneratia alba	Breeding of fish in estuaries, construction material
7	Xylocarpus granatum	Breeding of fish in estuaries, construction material
8	Ceriops tagal	Breeding of fish in estuaries, construction material
9	Cyperus alticularis	Fish breeding, food for aquatic animals, fodder for livestock
10	Cyperus exaltatus	Fish breeding, food for aquatic animals, fodder for livestock
11	Drymaria cordata	Fish breeding, food for aquatic animals, fodder for livestock
12	Acrostichum aureum	Fish breeding, food for aquatic animals, fodder for livestock
13	Fimbristylis feruginea	Fish breeding, food for aquatic animals, fodder for livestock
14	Ludwigia jussiaeoides	Fish breeding, food for aquatic animals, fodder for livestock
15	<i>Hyphaene</i> spp (Mikoche)	Fish breeding, food for aquatic animals, fodder for livestock
16	Cyperus rotundus	Fish breeding, food for aquatic animals, fodder for livestock
17	Cyperus distans	Fish breeding, food for aquatic animals, fodder for livestock
18	Cyperus papyrus	Construction, Fish breeding, food for aquatic animals,

Table 11 Keystone Plant Species of the Pangani River Basin

4.3 Ecosystem engineers

Ecosystem engineers are organisms that create, modify and maintain habitats. Ecosystem engineering can alter the distribution and abundance of large numbers of plants and animals, and significantly modify biodiversity. An ecosystem engineer affects ecosystem composition and structure through its effects on the flow of resources other than food. Therefore, an ecosystem engineer affects the structure of an ecosystem through increasing or decreasing the relative abundance or concentration of a resource such as a plant nutrient or a substance that is detrimental to the performance of organisms or groups of organisms. Some plants are able to perform this function in the Pangani basin. Such plants include nitrogen fixers and lianas among others. Among the ecosystem engineers in the Pangani basin are lianas such as Adenia rumicifolia, Mezoneuron angolense, and Mikania cordata. Lianas (woody vines) are autogenic engineers as when lianas grow through a forest canopy, they connect trees together, forming arboreal pathways that monkeys and other animals can use to travel without having to descend to the ground (Charles-Dominique 1971; Charles-Dominique et al., 1981). The ecosystem engineers that are nitrogen fixers which increase nutrients in the ecosystem and include Sesbania sesban. Mangrove vegetation and its species (Avicenia marina, Bruguira gymnorrhza, Herritiera littoralis, Lumnitzera racemosa, Rhizophora mucronata, Sonneratia alba, Xylocarpus granatum and Ceriops tagal) are also considered ecosystem engineers as they form an environment which is an important habitat for spawning and breeding of other organisms including fish and other marine organisms.

5.0 SOCIO - ECONOMICALLY IMPORTANT PLANT SPECIES

5.1 Food plants

Table 12 shows the plant species that were identified to be food plants in the Pangani Basin. These are source of fruits, vegetables, tubers or other types of food. Most of the plant species in this category are terrestrial. Note that some of the names are given in vernacular language pending their identification.

5.2 Plants used as construction material

Most of the plants identified to be used for construction are wetland species though terrestrial plants also used for construction. The plants identified as source of construction material include *Phragmites* spp, *Typha capensis, Cyperus papyrus, Makuruwila, Hyphaene* spp (Mikoche), *Euphorbia sp* (*Minyaa/ Miaa*)., *Phoenix reclinata* (Kindu) and Cocos nucifera (minazi)and Milicia excelsa (Mvule) Deinbolia kilimandscharica var. kilimandscharica (Appendix 1). Further most of the terrestrial plants identified in the different zones of the basin may be used to produce construction material of one kind or another. Cyperus papyrus and Hyphaene are widely used in production of roofing material for houses, Cocos nucifera, Milicia excelsa (Mvule) and Deinbolia kilimandscharica var. kilimandscharica are used to produce timber and other construction material apart from Cocos being used as food. All mangrove species are good for poles that are locally and internationally used in the construction of live livestock fences and live fences around homesteads and farm boundaries. All the mangrove species (Avicenia marina, Bruguira gymnorrhza, Herritiera littoralis, Lumnitzera racemosa, Rhizophora mucronata, Sonneratia alba, Xylocarpus granatum and Ceriops tagal) are good sources of construction material specifically poles.

SN	Species Name		In Water	Wet	Dry	
	Scientific	Vernacular		bank	bank	
1	Syzygium guineense	Mshihwi	-			
2	Syzygium cordatum	Mzambarau	-			
3	Psidium guajava	Mpera	-			
4	Ficus sycomorus	Mkuyu	-			
5	Solanum sp.	Mnavu	-			
6	Amaranthus spinosa	Mbuluja	-			
7	Sorindeia madagascariensis	kungwina/mkunguma	-			
8	Colocasia sp	Magimbi	-			
9	Tamarindus indica	Mkwaju	-			
10	Hyphaene sp.	Mikoche/Mkochwe	-			
11	Zanthoxylum chalibeum	Msala/Msele	-			
12	Cardamine trichocarpa	Msegeyu	_			
13	Synsepalum sp	Msambia/Sambia	_			
14	Rubus apetalus	Mtula/Mtelia	-			
15	Carica papaya	Mpapai	_			
16	Eleis guineense	Kindu	_			
17	Cocos nucifera	Minazi	_			
18	-	Mavungo	_			
19	-	Mbondela	_			
20	-	Horojo	-			
21	-	Maungoungo	-			
22	-	Mgagani	-			
23	-	Bwebwe	-			
24	-	Matuberi	-			
25	-	Mchunga	-			
26	-	Mtorilo	-			
27	-	Makoma Kunazi	-			
28	-	Sangale	-			
29	-	Zinge	-			
30	-	Tarata	-			
31	-	Matufaa	-			
32	-	Mtonga	-			
33	-	Mgaa	_		V	

Table 12Plant Species identified to be a source of food in the Pangani River Basin

5.3 Plants used for medicinal purposes

A number of plants are known to have medicinal value in the Pangani basin. There are about 30 plant species in the riparian zone that are identifiable as having medicinal qualities and are used by the local communities for medicinal purposes.

SN	Species Name			
	Botanical	Vernacular		
1	Triumfetta cordifolia var. tomentosa	Msosokwe		
2	Deinbolia kilimandscharica var. kilimandscharica	Bwakabwaka		
3	Englerophytum natalense	Mdudu		
4	Englerophytum natalense Ricinus communis	Mnyonyo		
5	Ximenia caffra	Mtundutwa		
6	Phoenix reclinata	Kindu		
7	Salvadora persica			
8	Solanum incanum	Ndulele		
9	Milicia excelsa	Mvule		
10	Ficus sp	Mkuyu		
11		Mbwawa		
12		Mtango		
13		Mzera		
14		Kilemela kuka		
15		Chatendee		
16		Ziya		
17		Makoka		
18		Mswaki		
19		Usigisi		
20		Kongo		
21		Mshasha		
22		Mkuvukuvu		
23		Mtula		
24		Mhunga		
25		Kivumbasi		
26		Mdaha		
27		Rumbizi		
28		Mvugunya		
29		Mjarato		
30		Mayungingi		

Table 13Plant species used for medicinal purposes in the Pangani River basin

6.0 SPECIES RESPONSE TO FLOW

6.1 Species attributes linked to flow

Different species respond differently to different environmental factors. One of the environmental factors in the Pangani system is flow which varies seasonally. The choice of species as an indicators of flow regimes was based three criteria; the position of the species in the different longitudinal zones (upstream-downstream distribution) on the river systems, lateral distribution of the species (aquatic, wet bank or dry bank) and where possible ecological and socio-economic significance of respective species. Further more for each longitudinal zone species that represent different growth forms (trees, herbs and shrubs) occurring in each lateral zone (aquatic, wet bank and dry bank) were used to indicate possible responses of each growth form to different flow regimes (Table 14).

Such variations will likely induce different characteristics on plants that inhabit the riparian zone as a response and adaptations. The species attributes linked to flow for selected plant species in different ecozones of the Pangani basin are shown in Table 15.

Table 14Representative Species as Indicators of Response to Flow Regimes in the Pangani River Basin

Longitudinal Zone	Species	Growth Form	Lateral Distribution	6	Eco econo	logic mic l			e
				1	2	3	4	5	6
Mountain Stream	Albizia schimperana	Tree	Dry bank						
	Ficus capreifolia	Tree	Wet bank						
	Tithonia diversifolia	Herb	Dry bank						
	Drymaria cordata	Herb	Wet bank						
	Pavetta stenocephala	Shrub	Dry bank						
	Vernonia hildebrandtii	Shrub	Wet bank				\checkmark		
Upper Foothill	Albizia glaberrima	Tree	Dry bank						
	Acacia xanthophloea	Tree	Wet bank				\checkmark		
	Abutilon mauritianus	Herb	Dry bank						
	Typha capensis	Herb	Aquatic/Wet bank						
	Ricnus comunis	Shrub	Dry bank						
	Suaeda monoica	Shrub	Aquatic/wet bank						
Lower Foothill	Sclerocarya birrea ssp caffra	Tree	Dry bank						
	Ficus sur	Tree	Wet bank						
	Cyperus articulatus	Herb	Wet bank						\checkmark
	Trichilia emetica	Tree	Dry bank						
	Kylinger elata	Shrub	Wet bank						
Rejuvenated Bedrock	Acacia polyacantha	Tree	Dry bank						\checkmark
/Mature Lowland River	Baringtonia racemosa	Tree	Wet bank						
	Phoenix reclinata	Shrub	Dry Bank						
	Cyperus exaltatus	Herb	Wet bank						\checkmark
Estuary	Čocos nucifera	Tree	Dry bank						
	Rhizophora mucronata	Tree	Wet bank						
	Xylocarpus granatum	Tree	Wet bank						

- 1 Food
- 2 3 Medicine
- Construction
- Indicator Species
- 4 5 6 Keystone Species
- Ecosystem Engineer

Table 15Species attributes linked to flow in the Pangani River basin (Key: Flow
Variable 1=median discharge, flow duration and number of flood peaks above
1:0.5, Flow Variable 2=minimum 7- day flow)

Site	Representative Species	Flow Variable	Response to Flow Regimes
Mountain Stream Zone	Albizia schimperana	1	• This is a deep rooted terrestrial tree species which is capable of obtaining underground water during dry season.
			• Increasing median flow the trees grow better.
			• If the median flow decreases the trees can still survive though its growth may decrease.
			• Increasing the duration of flow may kill the trees
			• If the frequency of flood peaks (small floods) increases the trees may not be affected.
		2	• These species can still survive at 7 - days min. Q.
	Ficus capreifolia	1	• It is a catchment tree species of the wet bank.
			• During dry season (when median flow decreases), Ficus species can obtain underground water using its
			deep roots.
			• Under flooded environment, the species can still survive although the performance will decrease
		2	• If the minimum 7–day flow decreases the species can still survive as it can use its deep roots to extract water from underground sources.
	Tithonia diversifolia	1	• A dry bank herb
			• Increase in median and duration flow will increase the growth of the plant as more water will be available
			• Increase in flood peaks may not affect the plant
		2	• The species growth will decrease with decrease in the dry season minimum 7-day flow. On the other hand increase in the minimum 7-day flow increases the growth of the plant
	Drymaria cordata	1	• This is a wet bank species
			• Decrease in the median flow increases the growth of the plant
			• Increase in the flow duration and flood peaks during the long rains will decrease the growth of the species
		2	• Decrease in the dry season 7-day minimum flow will decrease the growth of the plant

Site	Representative Species	Flow Variable	Response to Flow Regimes
Mountain Stream Zone	Pavetta stenocephala	1	 A dry bank shrub Decreasing the median flow, duration of flow and flood peaks will lead into decrease in growth of the plant as water availability becomes less for dry bank species
		2	• Decrease in the 7-day minimum flow during the dry season kills the plants and reduce their abundance
	Vernonia hildebrandtii	1	 A wet bank shrub Decrease in median flow, duration of flow and small flood peaks will reduce the growth of the plants
		2	• Decrease in the 7-day minimum flow during the dry season will likely kill the plants
Upper Foothill Zone	Albizia glaberrima	2	 This is a deep rooted dry bank tree species which is capable of obtaining underground water during dry season. Increasing median flow the trees grow better. If the median flow decreases the trees can still survive though its growth may decrease. Increasing the duration of flow may kill the trees If the frequency of flood peaks (small floods) increases the trees may not be affected. These species can still survive at 7 - days min. Q.
	A socia wanthanklass		
	Acacia xanthophloea	1	 A wet bank tree species The plants grows better if median flow is increased If median flow is decreased, the growth will also decrease
		2	• If the minimum 7 – day flow decreases the plants may die
	Abution mauritianum	1	 A dry bank herb Increasing the median flow will increase the growth of the species thus its abundance. If median flow decreases the growth will not be affected.
		2	• If the minimum 7–day flow is decreased the plant will start to dry.
	Typha capensis	1	 A wet bank herb This species is a water lover and will survive well under high water levels. The species cannot survive if the median decreases. Flooding will increase the growth and survival of the species. Constant median flow won't change the growth of the species.
		2	 Decrease in the minimum 7 – day flow will kill the species

Site	Representative Species	Flow Variable	Response to Flow Regimes
Upper Foothill Zone	Ricinus communinis	1	 A dry bank shrub This is a terrestrial shallow rooted shrub hence a dry bank species. It is adapted to dry conditions and can survive well at median discharge in all seasons and prolonged flow duration during the long rains.
		2	 The species can still survive minimum 7 day Q during the short rains It may die during the dry seasons under decreasing minimum 7-day flow
	Suaeda monoica	1	 A wet bank shrub Decrease in the median flow and duration of flow may kill the plant Increase in small flood increases the growth of the plant
		2	• Decrease in the 7-day minimum flow during the dry and short rain seasons may kill the plant
	Barringtonia racemosa	1	 Under flooding conditions the trees may die. The trees will survive if media flow decrease as they have deep roots that can extract underground water
		2	 The trees will still survive at minimum 7-day flow,
			•
Lower Foothill Zone	Sclerocaria birrea ssp caffra	1	 A dry bank tree A widespread terrestrial tree species adapted to semi-arid conditions. Can grow and survives well under median discharge during all seasons. It may not withstand long duration of discharge and numerous flood peaks during the rain season.
		2	• Being a tree with deep roots and adapted to dry conditions it can still survive well under minimum 7 day flow in the dry season and short rains.
	Ficus sur	1	 This is a dry bank deep rooted species. It will survive well under median discharges during dry, short and long rain seasons.
		2	 Because it has deep roots that can extract water from deep soil profiles it will not be affected by minimum 7 day flows though flooding may reduce its growth.

Site	Representative Species	Flow Variable	Response to Flow Regimes
Lower Foothill Zone	Cyperus articulatus	1	 A wet bank herb This is a shallow rooted aquatic species which require enough moisture for its growth. Decrease in the median flow will reduce the abundance of the species and may die Increase in the frequency of small flood peaks may reduce the growth of the species
		2	• Decrease in the minimum 7 – day flow during the dry season will kill the species
	Trichilia emetica	1	 A dry bank terrestrial tree species It has long roots that can extract water from deep underground sources during dry season. An increase in median flow results in better growth A decrease in the median flow the species can still survive since it can use its deep roots to extract water from underground sources Flooding under prolonged flow durations will kill the species as it is not adapted to flooded conditions
		2	 If the minimum 7 – day flow decreases during the dry season the species can still survive as it can use its deep roots to extract water from underground sources
	Kylinger ellata	1	 A wet bank shrub Growing well under high moisture levels. It can survive well under increased medium flow, flow duration and flood peaks. The species will die with decreasing median flow.
		2	• The species cannot survive under persistent low water levels and thus its growth will greatly slow down or die with decreasing minimum 7 - day flow during the dry season and short rains.
Rejuvenating River/Mature Lowland River	Acacia polyacantha	1	 A dry bank tree Can survive better under adequate moisture conditions. Grows well at median discharge and long flow durations during the dry, short and long rains
		2	 The species being a tree up to 25 m height have deep roots that can extract moisture from underground sources Can still grow well at minimum 7 day flow during all seasons

Site	Representative Species	Flow Variable	Response to Flow Regimes
	Baringtonia racemosa	1	 A wet bank tree Can survive better under increasing median flow conditions The tree can still survive under long flow durations and flood peeks
		2	 durations and flood peaks Decrease in the minimum 7 – day flow during the dry season will likely kill the tree in the long run
	Phoenix reclinata	1	 A wet bank species usually grows in alluvial soils near stream banks with permanent access to ground water. Can access deep ground water. Can grow well under median discharge in the dry, short rain and long rain seasons also under long duration flow.
		2	 Being a water lover and surviving where it can access enough moisture its growth may decrease under minimum 7 - day flow conditions during the dry season
	Cyperus rotundus	1	 A wet bank herb It is adapted to a wide range of moisture conditions. It can survive well at median flow, long duration of flow and different small flood peaks during the dry, short and long rain seasons
		2	 It can survive well under minimum 7 day flow during the rain season Its growth may somehow be decreased under decreasing minimum 7 day flow during the dry season
Estuary Zone	Cocos nucifera	1	 Widespread coastal species found growing on elevated grounds around the estuary. Not adapted to high water table or high flooding. Both median discharge and frequency of flood peaks will not affect the growth of the species in all seasons On the other hand increase in the duration of flow will decrease the abundance of the species
		2	• Decrease in the 7-day minimum flow will tend to reduce the growth of the specie during the dry season and short rains

Site	Representative	Flow	Response to Flow Regimes
	Species	Variable	
	Rhizophora mucronata	1	• Grows well on firm ground as well as in soft mud
			• Believed to be among the few species that can survive complete daily inundation.
			• Median discharge, duration of flow and frequency of flood peaks have no effect the abundance of the species in all seasons
		2	• Decrease in minimum 7–day flows in the dry season will reduce the growth and abundance of the species.
	Xylocarpus granatum	1	• Commonly occurs in the upper intertidal zone of mangrove forests
			• Mature trees are occasionally found at lower elevations.
			• Changes in median flows do not have effects on the species in all seasons
			• Changes in duration of flow and small flood peaks do not have any effect on the species
		2	• Decrease in the minimum 7-day flow especially during the dry season will likely reduce the growth of the species

6.2 Conceptual Models – Response Curves

The response curves below show how different representative species in the different ecozones of the Pangani River basin will respond to different flow regimes i.e. figures 5(a - i) for the mountain stream zone, figures 6(a - h) for the upper foothill zone, figures 7(a-i) for the lower foothill zone, figures 8(a-i) for the rejuvenated bedrock cascade zone, figures 9(a-i) for the mature lowland zone and figures 10(a-i) for the estuary.

For each zone the selected species represent the aquatic section, the wet bank section and the dry bank section of the river cross section assuming that they will respond differently given the different flow regimes.

The flow regimes considered here are median flow during the dry and short rain seasons which give the typical flows (cumecs) during the dry season and short rain season. The 7-day minimum flow variable (cumecs) during the dry season and the short rain seasons gives an indication of average flow over a 7-day period when flows are at a minimum during the dry season and short rain seasons.

On the other hand, duration of flow (days) indicate the duration of flows higher than the mean flow during the long rain season, while the median flow (cumecs) during the long rains represent the flows higher than the mean flow during the long rains giving a sense of typical high flows. The small flood peaks (m) during the long rains mean relative stage height of the largest flood peak during the long rains which gives a sense of the magnitude of high flows.

These curves were used as input into the preparation of the Pangani Flow Assessment Tool

6.2.1 Response Curves for Selected Plant Species in the Mountain Stream Zone Pangani River Basin

The representative species in this zone include Albizia schimperana (dry bank tree), Ficus capreifolia (wet bank tree), Tithonia diversifolia (dry bank herb) Drymaria cordata (wet bank hedb), Pavetta stenocephala (dry bank shrub) and Vernonia hildebrandtii (wet bank shrub). The response curves for the species are shown in figures 6(a-i). The **x** and **y** axes represent the present day conditions of flow and species abundance. The curves therefore show the response of species relative to its current abundance and current flow.

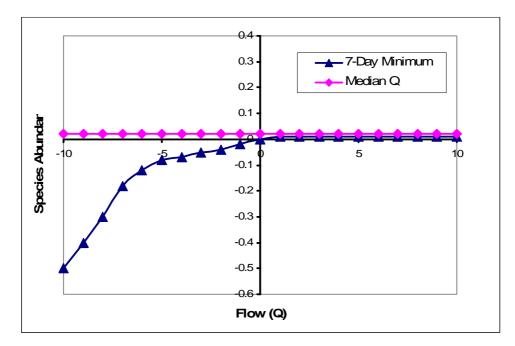


Figure 6(a) Albizia schimperana (Dry Season 1 & 2)

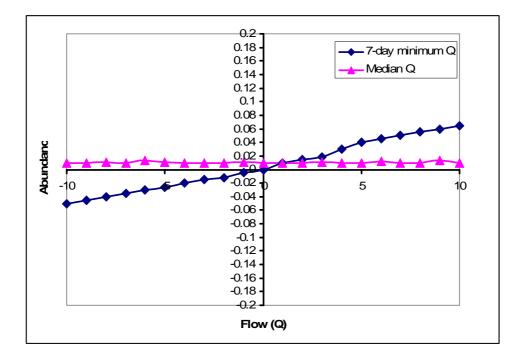


Figure 6(b) Albizia schimperana (Short Rains)

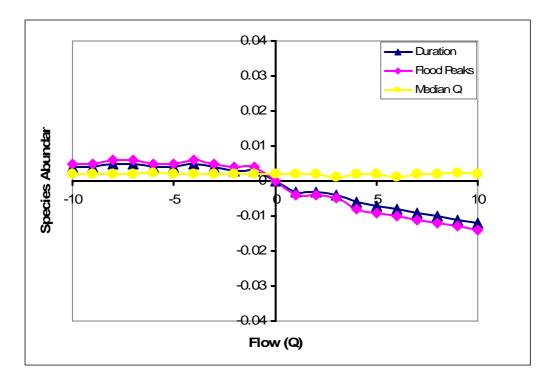


Figure 6(c) Albizia schimperana (Long Rains)

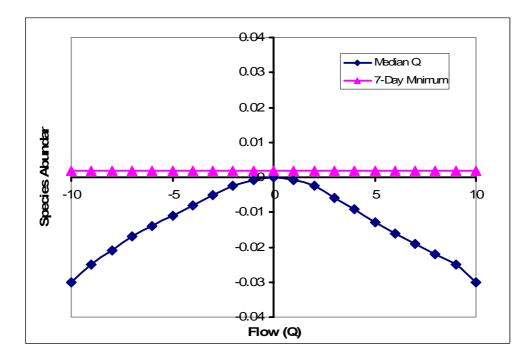


Figure 6(d) Ficus capreifolia (Dry Season 1 & 2)

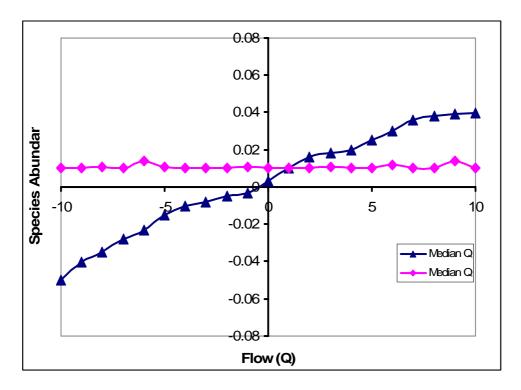


Figure 6(e) Ficus capreifolia (Short Rains)

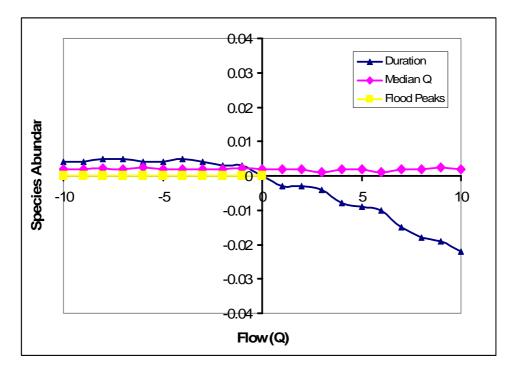


Figure 6(f) Ficus capreifolia (Long Rains)

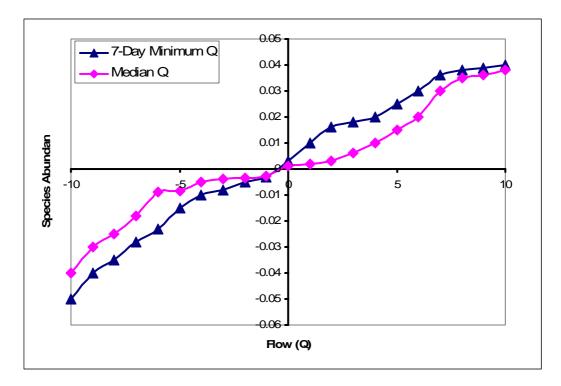


Figure 6(g) Drymaria cordata (Dry season 1& 2)

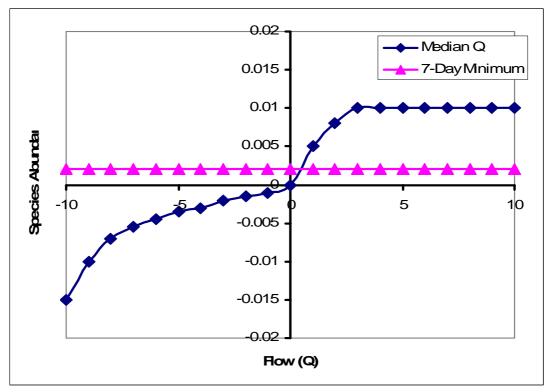


Figure 6(h) Drymaria cordata (Short Rains)

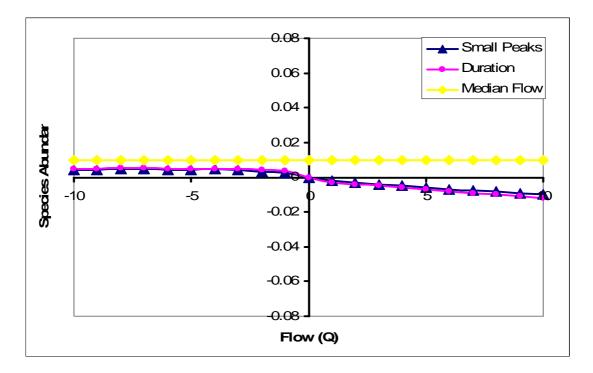


Figure 6(i) Drymaria cordata (Long Rains)

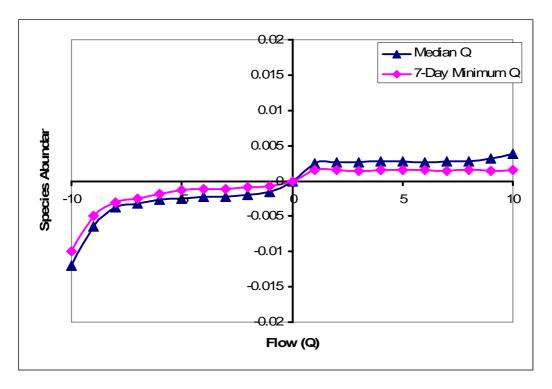


Figure 6(j) Pavetta stenocephala (Dry season 1 & 2)

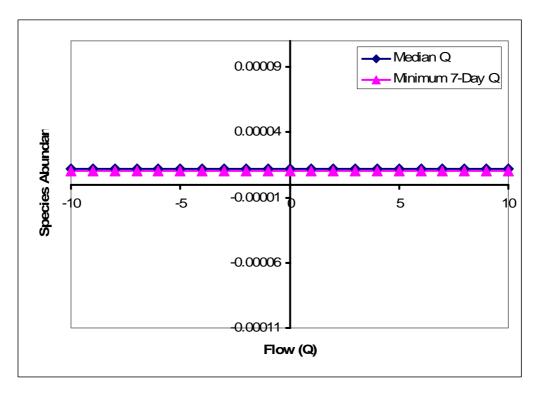


Figure 6 (k) Pavetta stenocephala (Short Rains)

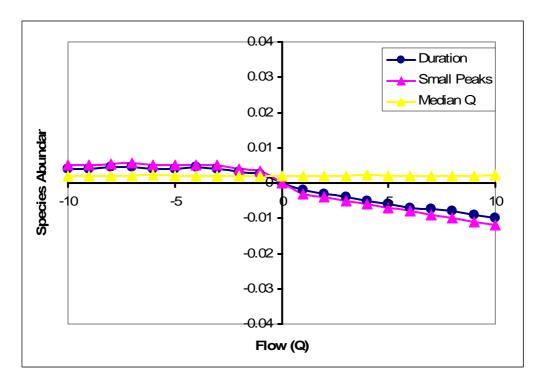


Figure 6(1) Pavetta stenocephala (Long Rains)

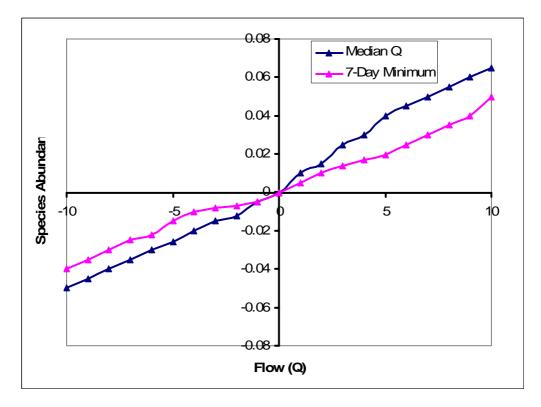


Figure 6(m) Vernonia hildebrandtii (Dry Season 1 &2)

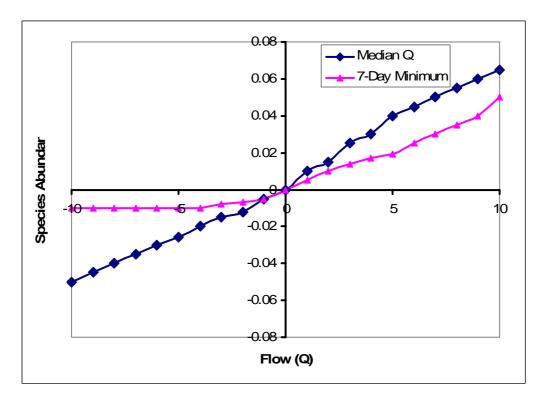


Figure 6(n) Vernonia hildebrandtii (Short Rains)

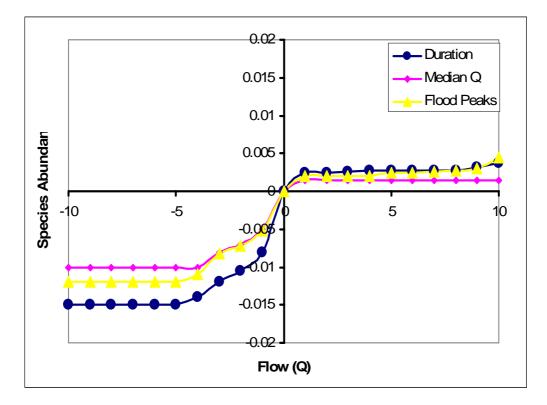


Figure 6(o) Vernonia hildebrandtii (Long Rains)

6.2.2 Response Curves for Selected Plant Species in the Upper Foothill Zone Pangani River Basin

The representative species in this zone include *Albizia glaberrima* (dry bank species), Acacia *xanthophloea* (wet bank species), *Abutilon mauritianus* (dry bank herb), *Typha capensis* (wet bank herb), *Ricinus comunis* (dry bank shrub) and *Suaeda monoica* (wet bank shrub). The response curves for the species are shown in figures 7(a-o). The **x** and **y** axes represent the present day conditions of flow and species abundance and therefore the curves show the response relative to the present day abundance and flow.

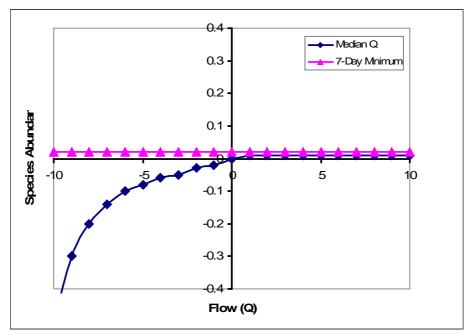


Figure 7(a) Albizia glaberrima (Dry season 1 & 2)

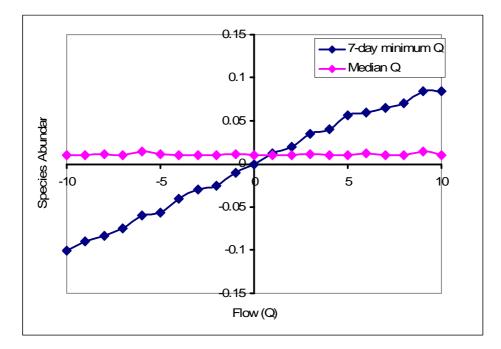


Figure 7(b) Albizia glaberrima (Short Rains)

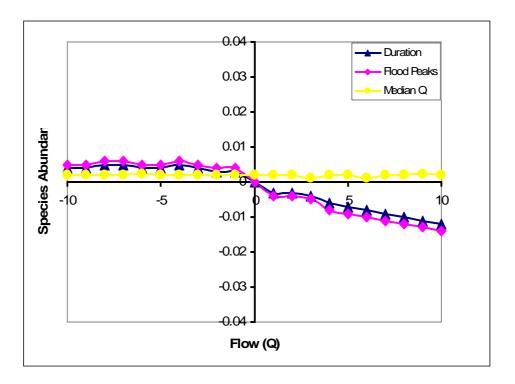


Figure 7(c) Albizia glaberrima (Long Rains)

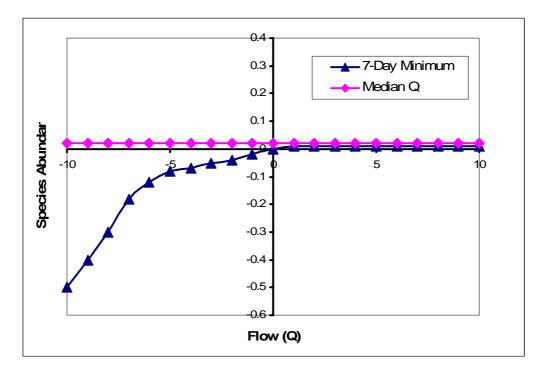


Figure 7(d) Acacia xanthophloea (Dry season 1 & 2)

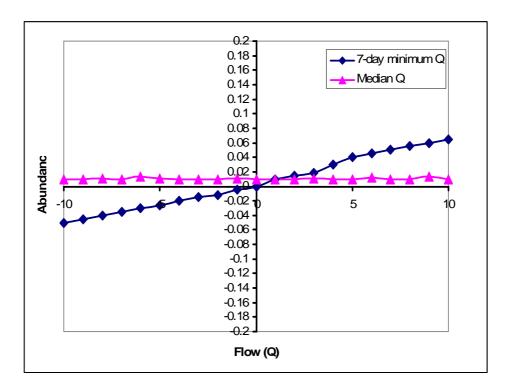


Figure 7(e) Acacia xanthophloea (Short rains)

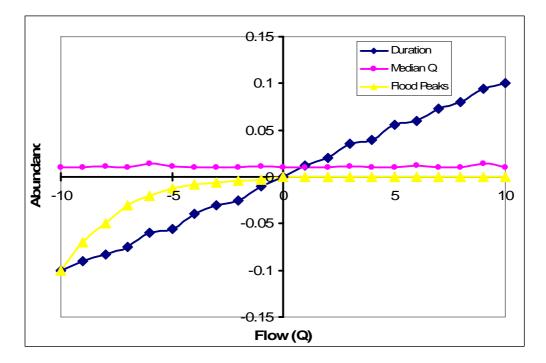


Figure 7(f) Acacia xanthophloea (Long rains)

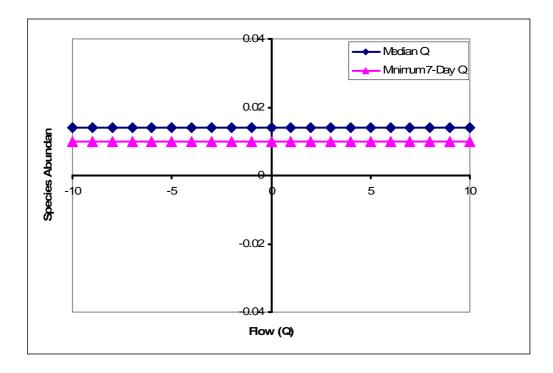


Figure 7(g) Abutilon mauritianum (Dry season 1 & 2)

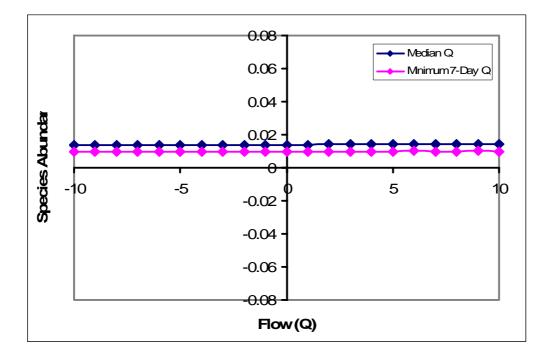


Figure 7(h) Abutilon mauritianum (Short Rains)

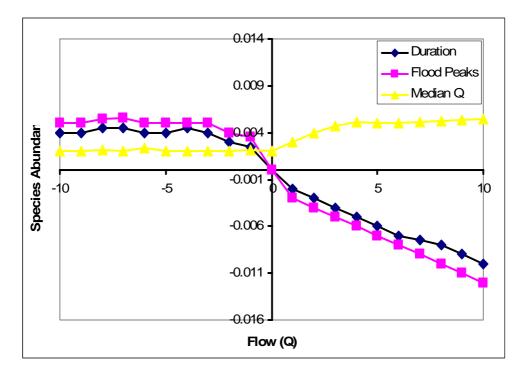


Figure 7(i) Abutilon mauritianum (Long Rains)

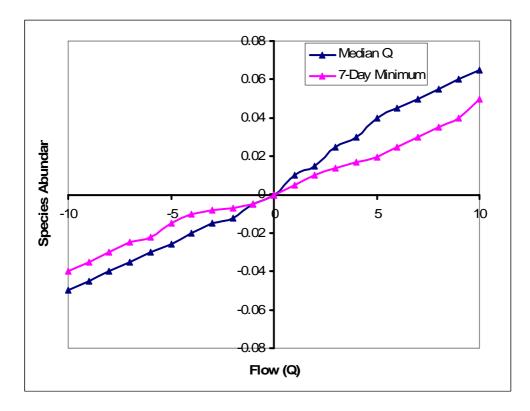


Figure 7(j) *Typha capensis* (Dry seasons 1 & 2)

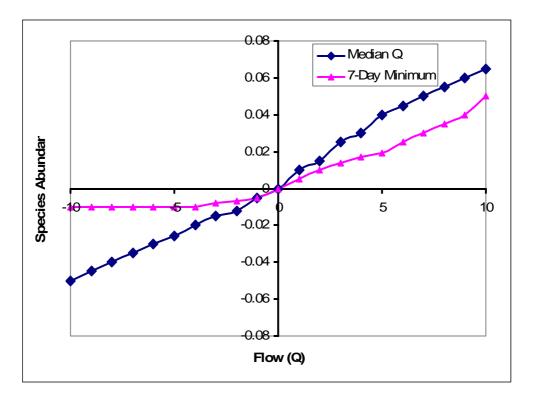


Figure 7(k) Typha capensis (Short Rains)

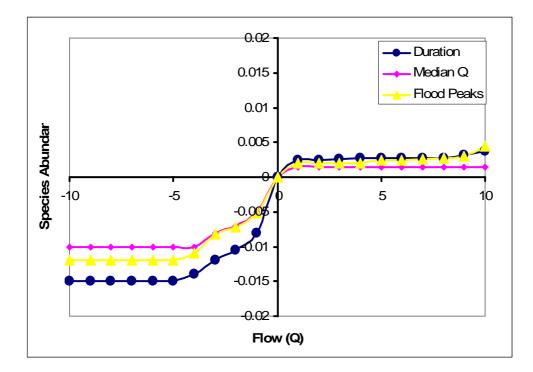


Figure 7(1) *Typha capensis* (Long Rains)

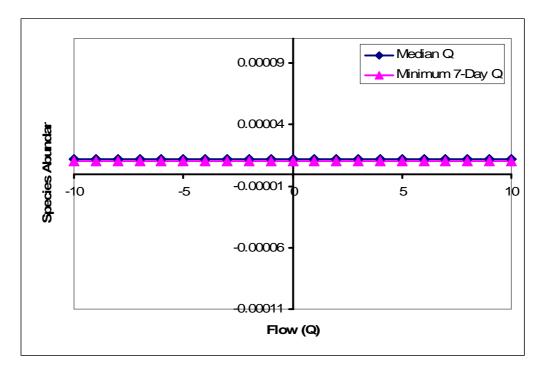


Figure 7(m) Ricinus communis (Dry seasons 1 & 2)

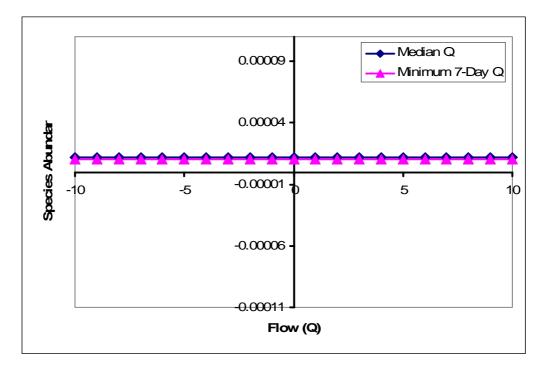


Figure 7(n) *Ricinus communis* (Short Rains)

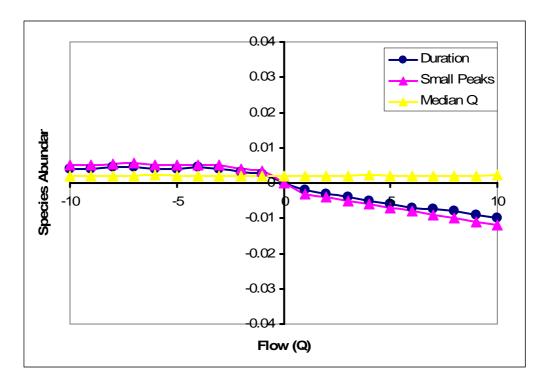


Figure 7(0) Ricinus communis (Long Rains)

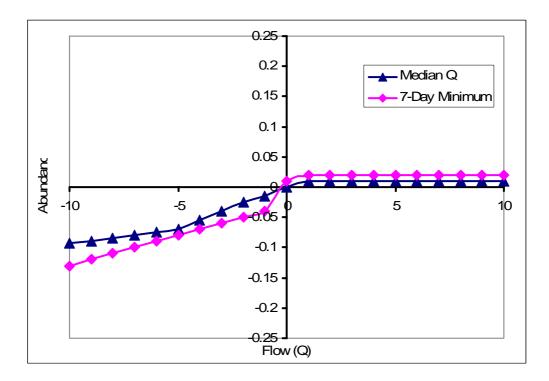


Figure 7(p) Suaeda monoica (Dry season 1&2 and Short Rains)

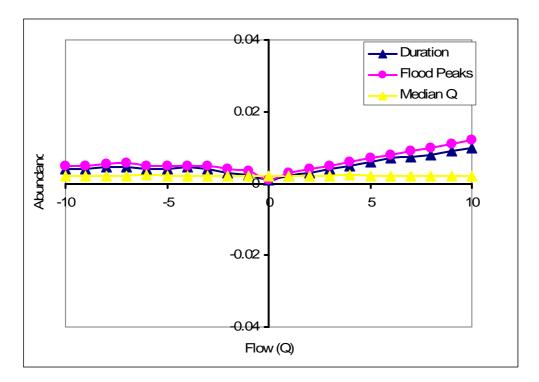


Figure 7(q) Suaeda monoica (Long rains)

6.2.3 Response Curves for Selected Species in the Lower Foothill Zone

The representative species in this zone include *Sclerocarya birrea ssp caffra* (dry bank tree), *Ficus sur* (wet bank tree), *Cyperus articulatus* (wet bank herb), *Trichilia emetica* (wet bank tree), *Kylinger elata* (wet bank shrub). The response curves for the species are shown in figures 8(a-i). The x and y axes represent the present day conditions of flow and species abundance.

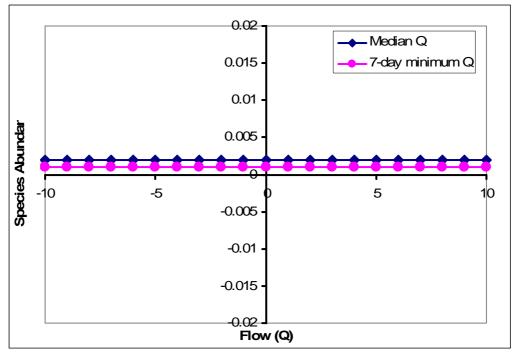


Figure 8(a) Sclerocarya birrea ssp caffra (Dry seasons 1 & 2)

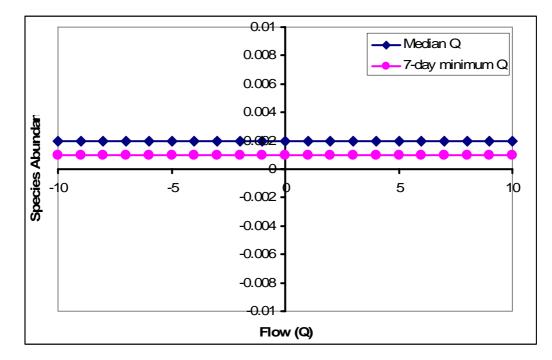


Figure 8(b) Sclerocarya birrea ssp caffra (Short Rains)

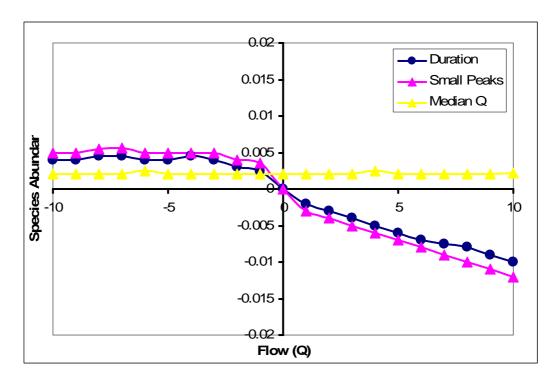


Figure 8(c) Sclerocarya birrea ssp caffra (Long Rains)

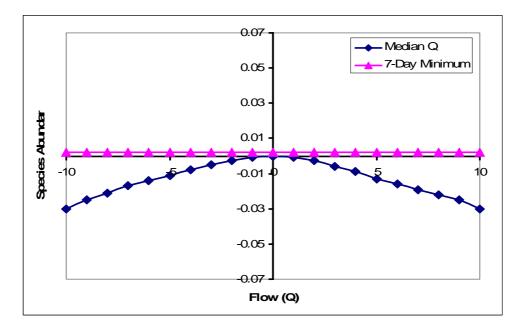


Figure 8(d) Ficus sur (Dry seasons 1 & 2)

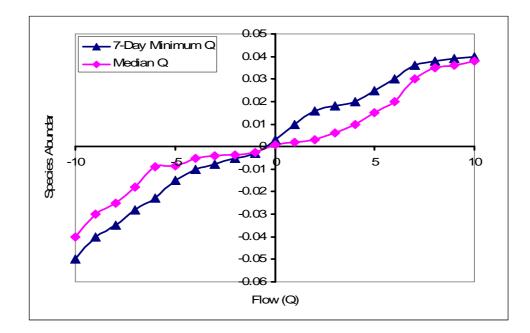


Figure 8(e) Ficus sur (Short Rains)

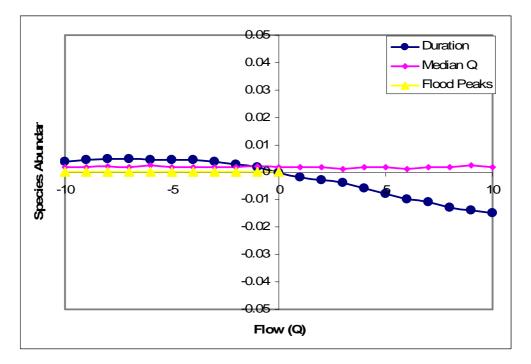


Figure 8(f) Ficus sur (Long Rains)

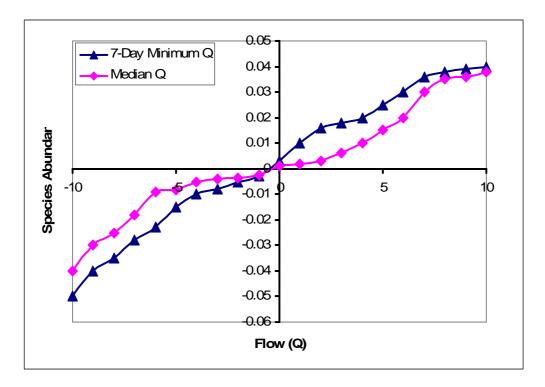


Figure 8(g) *Cyperus articulatus* (Dry seasons 1 & 2)

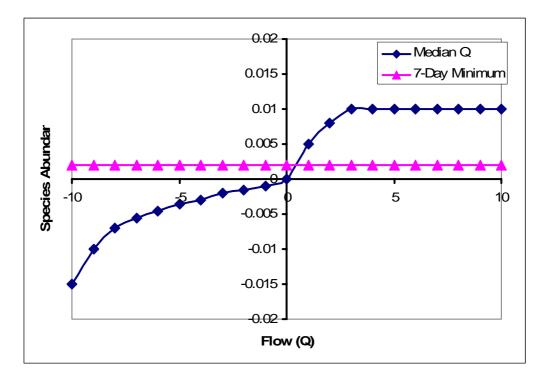


Figure 8(h) Cyperus articularis (Short Rains)

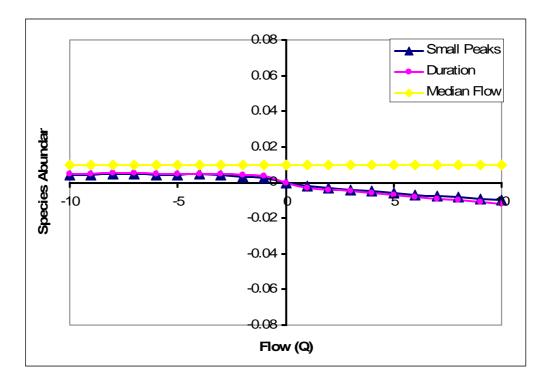


Figure 8(i) Cyperus articularis (Long Rains)

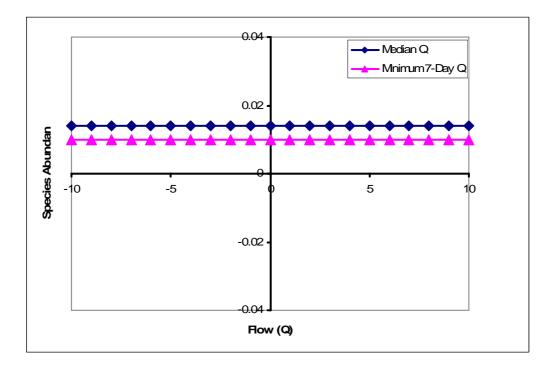


Figure 8(j) Trichilia emetica (Dry season 1 & 2)

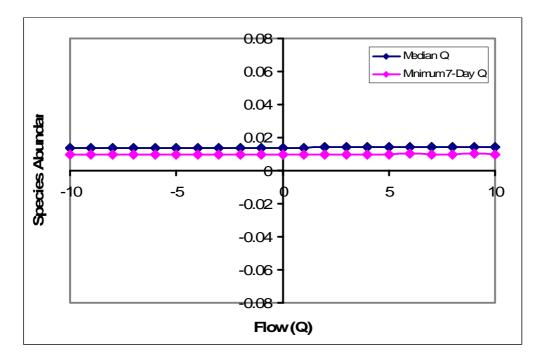


Figure 8(1) Trichilia emetica (Short Rains)

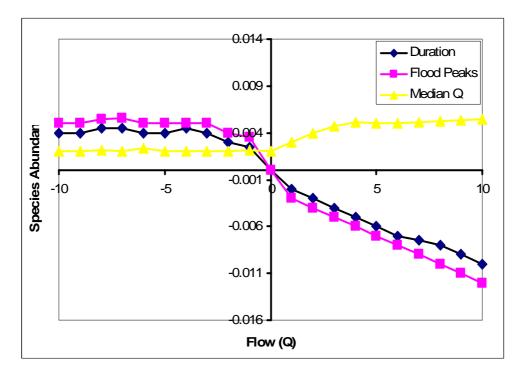


Figure 8(m) Trichilia emetica (Long Rains)

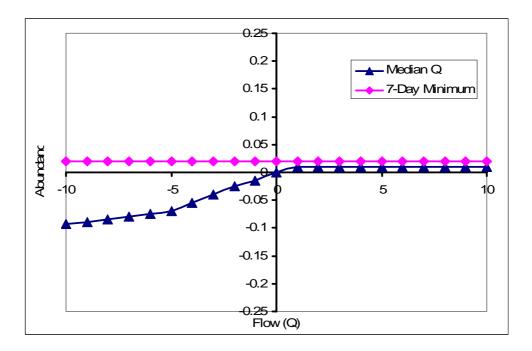


Figure 8(n) Kylinger elata (Dry seasons 1 & 2)

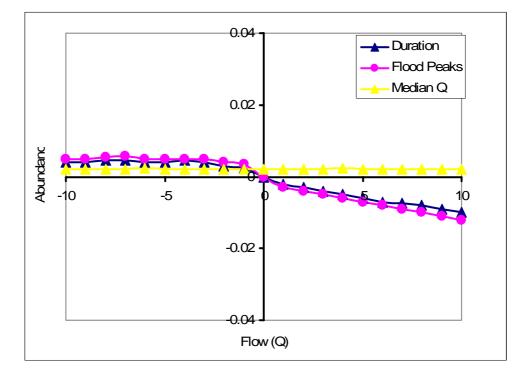


Figure 8(m) Kylinger elata (Long Rains)

6.2.4 Response Curves for Selected Species in the Rejuvenated Bedrock and Mature Lowland River Zone Pangani Basin

The representative species in this zone include *Acacia polyacantha* (dry bank tree), *Barringtonia racemosa* (wet bank tree), *Phoenix reclinata* (wet bank shrub), *Cyperus exaltatus* (wet bank herb). The response curves for the species are shown in figures 9(a-l). The **x** and **y** axes represent the present day conditions of flow and species abundance respectively and the curves show the species response relative to present day flow and abundance.

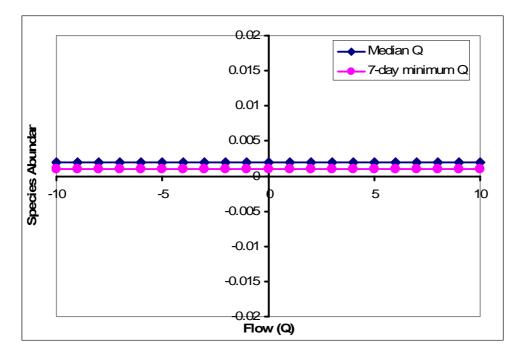


Figure 9(a) Acacia polyacantha (Dry seasons 1 & 2)

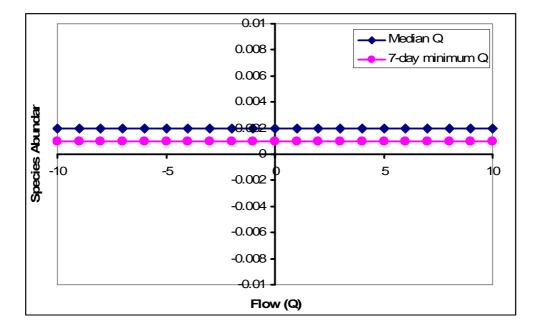


Figure 9(b) Acacia polyacantha (Short Rains)

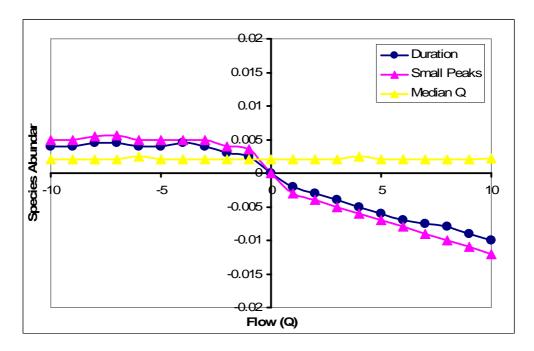


Figure 9(c) Acacia polyacantha (Long Rains)

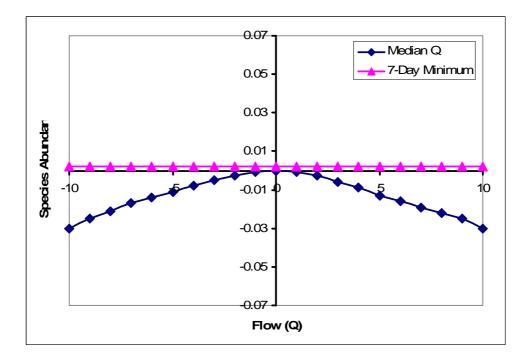


Figure 9(d) Barringtonia racemosa (Dry seasons 1 & 2)

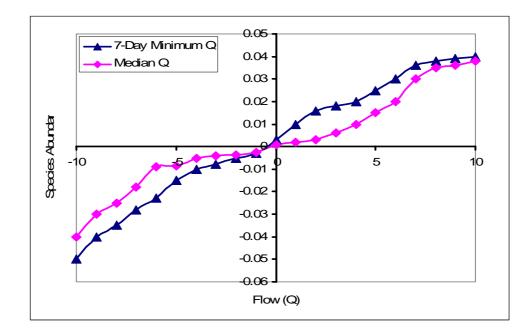


Figure 9(e) Barringtonia racemosa (Short Rains)

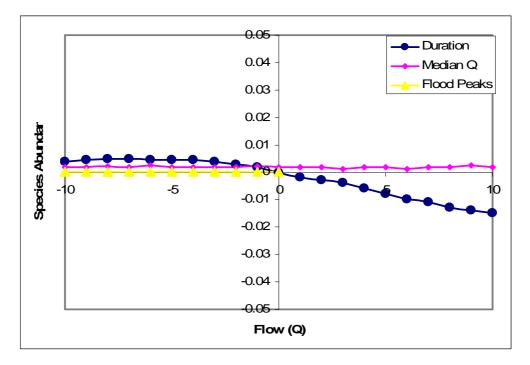


Figure 9(f) Barringtonia racemosa (Long Rains)

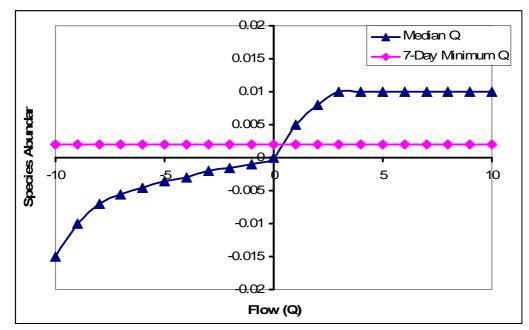


Figure 9(g) Phoenix reclinata (Dry seasons 1 & 2)

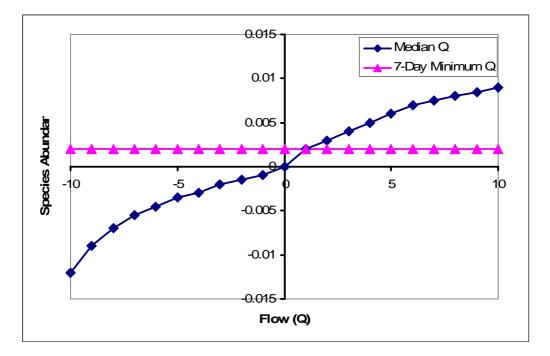


Figure 9(h) *Phoenix reclinata* (Short Rains)

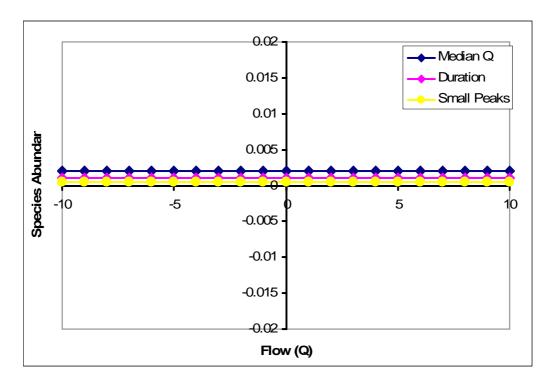


Figure 9(i) Phoenix reclinata (Long Rains)

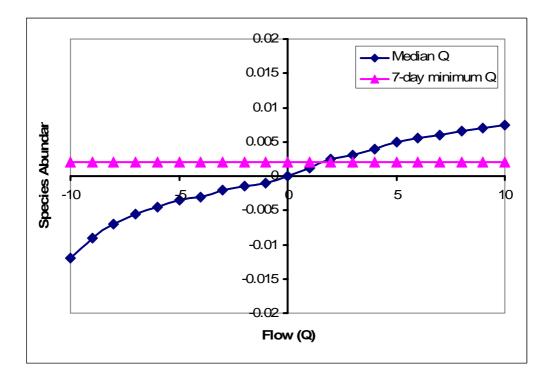


Figure 9(j) Cyperus rotudus (Dry season 1 & 2)

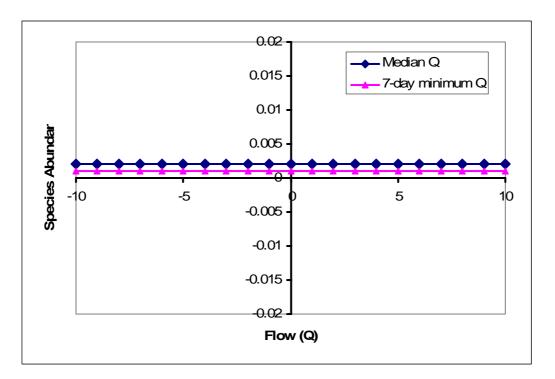


Figure 9(k) Cyperus rotundus (Short Rains)

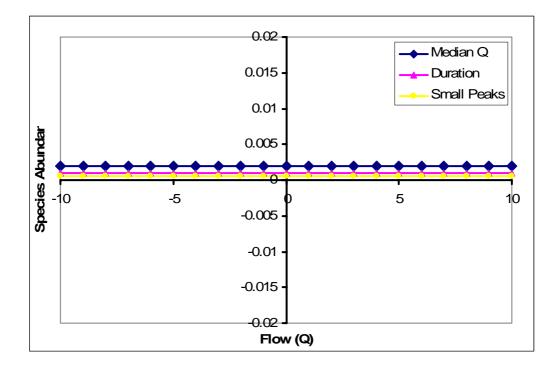


Figure 9(1) *Cyperus rotundus* (Long Rains)

6.2.5 Response Curves for Selected Species in the Estuary Zone Pangani River Basin

The representative species in this zone include *Cocos nucifera* (dry bank tree), *Rhizophora mucronata* (wet bank tree), and *Xylocarpus granatum* (wet bank tree). The response curves for the species are shown in figures 10(a-i). The x and y axes represent the present day conditions of flow and species abundance

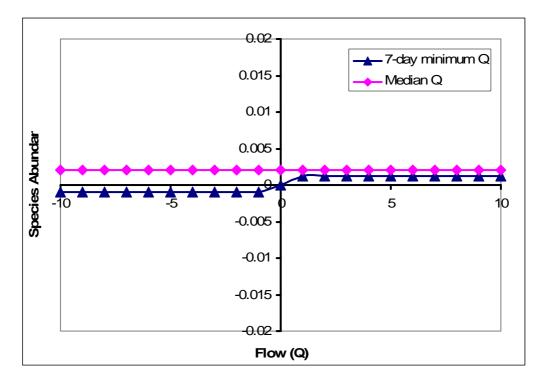


Figure 10(a) Cocos nucifera (Dry seasons 1 & 2)

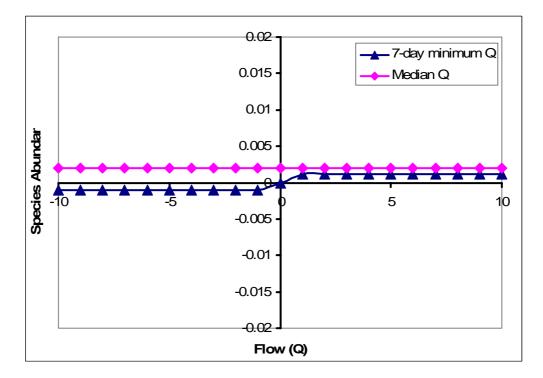


Figure 10(b) Cocos nucifera (Short Rains)

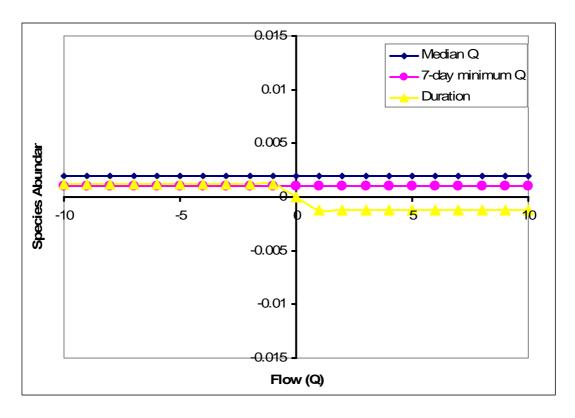


Figure 10(c) Cocos nucifera (Long Rains)

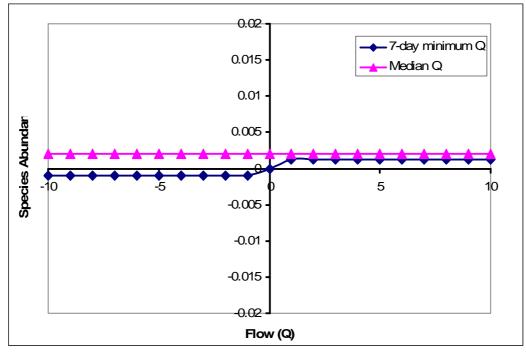


Figure 10(d) *Rhizophora mucronata* (Dry seasons 1 & 2)

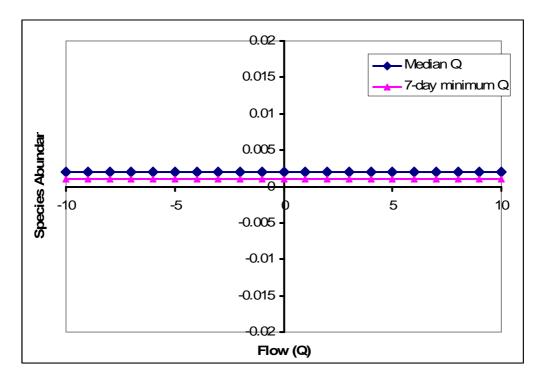


Figure 10(e) *Rhizophora mucronata* (Short Rains)

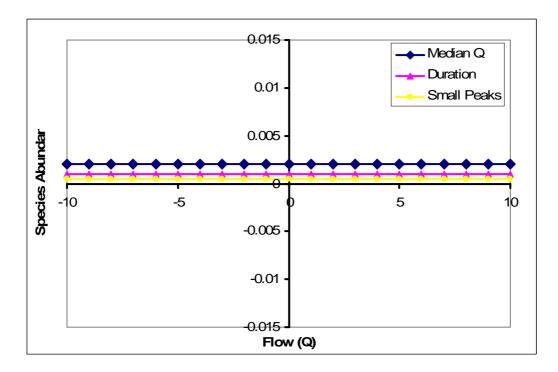


Figure 10(f) *Rhizophora mucronata* (Long Rains)

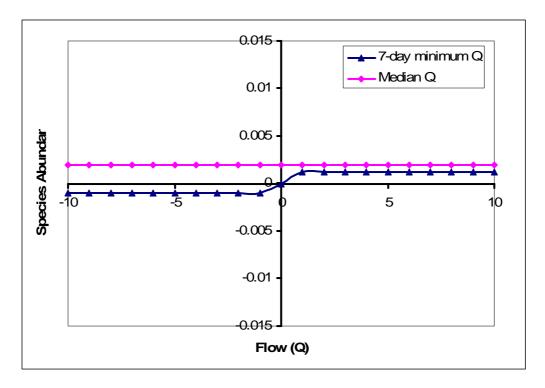


Figure 10(g) Xylocarpus granatum (Dry Seasons 1 & 2)

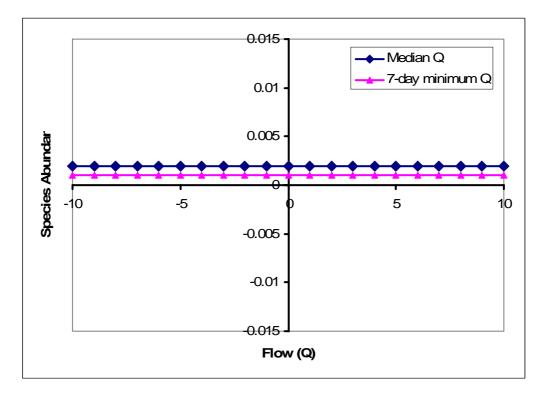


Figure 10(h) Xylocarpus granatum (Short Rains)

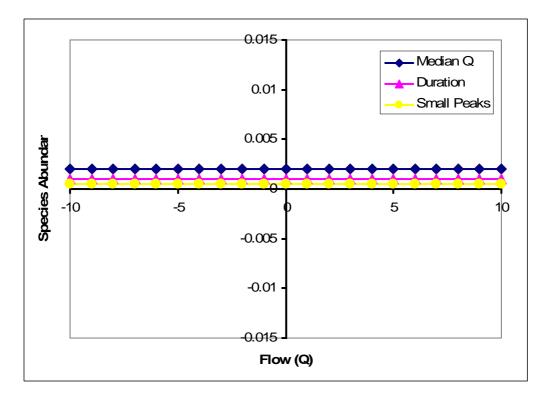


Figure 10(i) Xylocarpus granatum (Long Rains)

7.0 CONCLUSION AND RECOMMENDATIONS FOR FURTHER RESEARCH

Most of the species of the aquatic system are likely to be impacted more by decreases in the 7day minimum flow and to some extent the median discharge especially in the dry season. Both species may be affected by duration of flood either negatively or positively. The wet bank species will experience higher impact from fluctuations in the frequency of small flood peak. Frequent flood peaks can suppress regeneration of most wet bank species due to frequent wash out of seedlings and seeds. Deep rooted dry and wet bank species can withstand reduced median flow and sometimes reduced 7-day minimum flows during the dry season. Frequency of flood peaks and prolonged flooding during the rain season (flooding duration) will likely suppress wet and dry bank species which are not adapted to flooded conditions through possible suffocation. The dynamics of flow regimes will therefore influence survival of plants differently depending on the characteristics of plant species. Clear determination of the representative plant species in the four lateral sections of the river i.e. water column, wet bank and dry bank is necessary for more clear understanding of the different responses by different species. Such achievements can be based on intensive field based studies and monitoring of vegetation distribution in relation to environmental processes. Further studies therefore should focus on determining the environmental correlates of different plant species distribution through field studies to be able to filter out the impacts of different water regimes from other environmental factors. Proper choice of representative species in the different ecozones require a through analysis of the ecologically

and socio-economically important plant species in the different ecozones calling for more detailed studies of such species.

REFERENCES

IUCN 2006a. Pangani Basin: A Situation Analysis. IUCN Eastern Africa Program Office. 103 pp

IUCN 2006b. IUCN Water and Nature Initiative Pangani Basin River Health Assessment 202 pp

Kamugisha, S. G. Lugomela, A. Maggid, B.M. Clark, K. Hutchings, L. Benno, D. Salum, F. Mbago and S. Mukama and E. Materu 2006. Pangani River Basin Flow Assessment Initiative Estuarine Health Assessment Report (Draft Report). Pangani Basin Water Office 115 pp

Munishi PKT. Forest Ecology – Compendium 120pp

PBWO/IUCN 2007. Pangani River System – State of the Basin Report – 2007. PBWO Moshi Tanzania and IUCN Eastern Africa Regional Program, Nairobi Kenya 47pp

Wang, Y., Bonynge, G., Nugranan, J., Traber, M., Ngusaru, A., Tobey, J., Hale, L., Bowen, R., and Makota, V. 2003. Remote sensing of mangrove change along the Tanzania coast. *Marine Geodesy* 26: 1014.